设总体服从指数分布X~e(),取一个样本,求矩估计量________
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 21:03:23
随机变量X服从参数为2的指数分布EX=1/2DX=1/4EX²=(EX)²+DX=1/2EY=1/4E(2X²+3Y)=2*(1/2)+3*(1/4)=7/4
密度函数f(x)=1,0
xi独立同分布F1x=MAX(x1,x2,.)=(f(x,λ))^n,然后根据期望的定义求相应的积分就是了,但是要注意指数分布当x《0时f=0
先令Y=lnXF(y)=P{Y≤y}=P{lnX≤y}=P{X≤e^y}=Fx(e^y)=1-e^(-e^(y+1))此为Y的分布函数f(y)=F`(y)=e^(y+1-e^(y+1))你确定参数是e
参数为1,就是λ为1
答案是2/(Y*Y*Y)求函数的概率密度有一个公式,如果Y(X)的导数是非0的,则可以用这个公式.这个题Y关于X的导数是大于0的,所以:(1)求Y关于X的函数的反函数,此题Y的反函数就是:Y的对数;(
解法的要点如下图,先找出分布函数的关系.经济数学团队帮你解答,请及时采纳.谢谢!
E(X)=1Ee^(-2x)=∫(0~无穷)e^(-2x)e^(-x)dx=-e^(-3x)/3|(0~无穷)=1/31+1/3=4/3再问:期望的定义式不是E(X)=∫xf(x)dx,f(x)为密度
指数分布的期望为参数的倒数,所以EX=1/2,EY=1/4故E(2X)=1,E(3Y)=3/4
大数定律:一组相互独立且具有有限期望与方差的随机变量X1,X2,…,Xn,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值.这里X21,X22,…,X2n满足大数定律的条件,且EX2i
F(y)=P(Y≤y)=P(1-exp(-2X)≤y)=P(X≤-ln(1-y)/2)=∫[0,-ln(1-y)/2]2exp(-2x)dx=y0
P(X>1)=e^(-λ)=e^(-2),则λ=2
E(x)=1/2D(x)=1/4E(X^2)=D(x)+E^2(x)=1/2如有意见,欢迎讨论,共同学习;如有帮助,请选为满意回答!
根据E(x)的定义,可以知道E(x)=∫(-∞,+∞)xf(x)dx=∫(0,∞)xλe^-λx(这里用分部积分法)=-xe^-λx|(0,∞)+∫(0,∞)e^-xλdx=1/λ再问:前面那个题目顺
X~E(n)E(X)=1000=1/nD(X)=1/n^2=1000^2p(1000
/>∵X服从参数为1的指数分布,∴X的概率密度函数f(x)=e-x,x>00,x≤0,且EX=1,DX=1,∴Ee-2x=∫+∞0e-2x•e-xdx=-13e-3x|+∞0=13,于是:E(X+e-