设总体服从指数分布e(λ),求参数λ的矩估计和极大似然估计

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 17:20:07
设总体服从指数分布e(λ),求参数λ的矩估计和极大似然估计
概率论问题:设随机变量X服从参数为2的指数分布,Y服从参数为4的指数分布,求E(2X²+3Y)的值.

随机变量X服从参数为2的指数分布EX=1/2DX=1/4EX²=(EX)²+DX=1/2EY=1/4E(2X²+3Y)=2*(1/2)+3*(1/4)=7/4

设随机变量X,Y相互独立,X服从λ=5的指数分布,Y在[0,2]上服从均匀分布,求概率P(X≥Y)

XY相互独立,那么XY联合分布密度f(x,y)=fx(x)*fy(y)fx(x)=5e^(-5x)fy(y)=1/2P(X>=Y)=∫∫f(x,y)dxdy=∫(0,2)1/2∫(y,∞)5*e^(-

设X1 X2 ...Xn为来自总体X的样本,总体X服从参数为λ的指数分布,即X~f(x,λ)=λexp(-λx) 求X(

xi独立同分布F1x=MAX(x1,x2,.)=(f(x,λ))^n,然后根据期望的定义求相应的积分就是了,但是要注意指数分布当x《0时f=0

设随机变量X=e^y服从参数为e的指数分布.求随机变量Y的概率密度函数

先令Y=lnXF(y)=P{Y≤y}=P{lnX≤y}=P{X≤e^y}=Fx(e^y)=1-e^(-e^(y+1))此为Y的分布函数f(y)=F`(y)=e^(y+1-e^(y+1))你确定参数是e

设X服从参数设X服从参数为λ=1的指数分布,求Y=X^2的概率密度.

X的概率密度函数:fX(x)={e^-x,x>0{0,x0时,有FY(y)=P{X^2≤y}=P{-√y≤x≤√y}=∫(-√y→√y)fX(x)dxfY(y)=d[FY(y)]/dy=d[∫(-√y

设随机变量X服从参数为2的指数分布,证明Y=e^-2X服从U(0,1)

解法的要点如下图,先找出分布函数的关系.经济数学团队帮你解答,请及时采纳.谢谢!

设随机变量x服从参数λ=1的指数分布,求Y=lnx的概率密度

经济数学团队帮你解答,有不清楚请追问.请及时评价.

设总体X服从参数为2的指数分布,X1,X2,…,Xn为来自总体X的简单随机样本,则当n→∞时,Y

大数定律:一组相互独立且具有有限期望与方差的随机变量X1,X2,…,Xn,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值.这里X21,X22,…,X2n满足大数定律的条件,且EX2i

设随机变量X服从指数分布e(2),则EX²=

E(x)=1/2D(x)=1/4E(X^2)=D(x)+E^2(x)=1/2如有意见,欢迎讨论,共同学习;如有帮助,请选为满意回答!

设随机变量X服从指数分布,X的概率密度是f(x)={λe^-λx,x>0 求E(X) 0,others

根据E(x)的定义,可以知道E(x)=∫(-∞,+∞)xf(x)dx=∫(0,∞)xλe^-λx(这里用分部积分法)=-xe^-λx|(0,∞)+∫(0,∞)e^-xλdx=1/λ再问:前面那个题目顺

设随机变量X服从指数分布,E(x)=1000,则p(1000

X~E(n)E(X)=1000=1/nD(X)=1/n^2=1000^2p(1000

设随机变量X,Y独立,且均服从参数为λ的指数分布,求:X/(X+Y)的分布

设u=x+y,v=x/(x+y),算u,v的联合分布之后再求边际分布.

设随机变量X服从参数λ的指数分布,令Y=[X]+1,求Y的概率函数

x再问:跟[X](X取整)没有关系吗?你的解答没有体现取整再答:x