设总体X的概率分布为 先抽得一个样本x1=1求θ的矩估计值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:26:40
设总体X的概率分布为 先抽得一个样本x1=1求θ的矩估计值
一个概率题 设随机变量X的概率分布为

E(X)=0*0.1+1*0.4+2*0.5=1.4E(X^2)=0^2*0.1+1^2*0.4+2^2*0.5=2.4D(X+2)=D(X)=E(X^2)-E(X)^2=2.4-1.4^2=0.44

设总体X服从参数为λ的泊松分布,其中λ为未知参数.X1,X2,...,Xn为来自该总体的一个样本,则参数λ的矩估计量为?

X服从参数为λ的泊松分布,EX=λ.把EX换成一阶样本矩Xˉ,即得矩估计量为λ^=Xˉ.

设总体X的概率密度为f(x,Ө )=Ө x^(-Ө -1),x>1;0,其他

EX=∫[1,+∞]x*Өx^(-Ө-1)dx=Ө∫[1,+∞]x^(-Ө)dx=Ө/(1-Ө).Ө=EX/(1+E

设总体x的概率密度为f(X,θ),其中θ味未知参数,且E(X)=2θ,x1,x2……xn为来自总体x的一个样本

根据无偏估计的定义,统计量的数学期望等于被估计的参数,具体到这里就是说E(c*X的平均值)=θ又由期望的性质E(c*X的平均值)=cE(X的平均值)=θ那么E(X的平均值)=θ/c又E(X的平均值)其

设总体X~N(40,25的平方),从总体X中抽取一个容量为100的样本,求样本均值与总体均值之差的绝对值大于5的概率.

2(1-Φ(2)),然后查正态分布表,用的是同分布中心极限定理.不好打,就是把样本均值与总体均值之差标准化,除以σ/√n,然后5也除以这个,因为这个标准正态分布关于Y轴对称,所以就2倍的那个了.

设总体X的概率密度为f(x)=ae^(-ax),x>0;0,x=

EX=∫[0,+∞]x*ae^(-ax)dx=∫[0,+∞]e^(-ax)dx.[分部积分]=1/a.a的矩估计a^=1/Xˉ.

设总体X的概率密度为,求极大似然估计量

套用公式计算,经济数学团队帮你解答.请及时评价.再问:这一步是怎么的,看不懂  谢谢了再答:

设总体x的分布函数为f(x),概率密度函数为f(x),(x1,x2…xn)是来自总体x的一个样本,x(1)和x(n)分别

X(1)f1(x)=n*(F(x))^(n-1)*f(x)F1(x)=(F(x))^nX(n)fn(x)=n*(1-F(x))^(n-1)*f(x)Fn(x)=(1-F(x))^n其中f(x)F(x)

概率论大数定理设总体X服从参数为2的泊松分布、X1,X2`````Xn为来自总体X的一个样本,则当n→∞,Yn=1/n(

Yn的极限应该是6吧.这里的Yn其实就是样本的二阶原点矩,记为A2.其一阶原点矩为1/n(X1+X2+……+Xn),记为A1.其二阶中心矩记为S^2.它们之间的关系为A2-A1^2=S^2.又因为X服

设总体X服从参数为λ的普阿松分布(泊松分布),它的分布律为:

首先写出似然函数LL=∏p(xi)=∏{[(λ^xi)/(xi!)]·e^(-λ)}=e^(-nλ)·∏{[(λ^xi)/(xi!)]=e^(-nλ)·λ^(∑xi)·∏1/(xi!)然后对似然函数取

考研题:设总体X的概率密度为f(x,)=2x/3θ^2,θ

很久没做过了,有点忘,仅做参考,你再算算,大概是这意思应该,不保证对

求Ө的极大似然估计,设总体X的概率密度为f(x

设总体X的概率密度为f(x)=Өx^(Ө-1),0

设离散型随机变量X的概率分布为P.

需要知道随机变量X的取值范围,(一)如果X的取值范围是1,2,3···则由所有情况概率总和为1可知:r*(p+p^2+p^3+```)=r*p/(1-p)=1,则p=1/(1+r)(二)如果X的取值范

设总体X~P(λ),则来自总体X的样本X1,X2.Xn的样本概率分布为

样本与总体同分步,也是P(λ),这是数理统计的规定.希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮,

设 X1,X2,X3.Xn为来自总体 X的样本,已知总体的分布密度函数为:[f(

亲爱的同学,你的题目抄写错误或图片拍摄不清晰,老师无法清楚理解题意,请重新核实你的问题再提问,谢谢!

设总体X服从自由度为m的伽方分布,(X1,X2...Xn)是其中一个样本,求样本均值的密度函数

1.由伽方分布的性质有:\x0dY=X1+X2+...+Xn服从自由度为nm的伽方分布,记其密度为fY(t).\x0d2.样本均值Z=Y/n,Z的分布函数记为FZ(z)=P{Z<=z}=P{Y&

随机变量与概率分布投两枚骰子,设两次投得向上的点数和为随机变量X,1).求X的分布列,

P(ξ=2)=1/6×1/6=1/36P(ξ=3)=C21(2在下1在上后同)×1/6×1/6=1/18P(ξ=4)=C21×1/6×1/6+1/6×1/6=1/12P(ξ=5)=C21×1/6×1/