设总体x服从正态分布,求总体样本平均值的期望
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 14:04:06
解法一:∵ξ~N(0,1)∴P(|ξ|<1.96)=P(-1.96<ξ<1.96)=Φ(1.96)-Φ(-1.96)=1-2Φ(-1.96)=0.948解法二:因为曲线的对称轴是直线x=0,所以由图知
x一~(10,3²/6)P(x一>11)=P((x一-10)/根号下1.5>(11-10)/根号下1.5)=1-标准正太(1/根号下1.5)计算查表得出结果
xi独立同分布F1x=MAX(x1,x2,.)=(f(x,λ))^n,然后根据期望的定义求相应的积分就是了,但是要注意指数分布当x《0时f=0
不需要,谁和说总体服从正态分布时,样本方差和样本均值独立了啊?
U=n^(1/2)*(xˉ-μ)/σ~N(0,1),D(U)=1.
不知你能否看到图片.都写在图片里了.很久没做概率题了.
E(X)=∫(-∞,∞)e^y*(1/2π)^(1/2)*e^((y-u)/2)^2dy=e^(1/2+u)
这个是统计学中的一个基本定理,与“大数定律及中心极限定律”无关,是正态分布的性质.可以看关于统计学中关于“抽样分布定理”的内容.
U=n^(1/2)*(xˉ-μ)/σ服从标准正态分布,即UN(0,1),因此,D(U)=1.
样本均值?那不直接是(X1+.+Xn)/n不过应该不是问这个吧可以说详细点?再问:是等于N(μ,σ^2)吗再答:有完整的题目么?这个X~N(μ,σ^2)意思是总体X服从总体均值为μ,总体标准差为σ的正
fX(x)=φ((x-u)/σ)/σf(X1,X2,...Xn)=fX1(x1)fX2(x2)..fXn(xn)=(1/√(2π)σ)^n*e^Σ(xi-u)²/(2σ)如有意见,欢迎讨论,
服从F(1,1)分布总体Y服从正态分布N(0,a),x1,x2,x3,x4为其样本.这句话说明了x1,x2,x3,x4相互独立,且都服从正态分布N(0,a),又由于独立的两态分布随机变量的线性组合仍是
http://blog.sciencenet.cn/home.php?mod=space&uid=116082&do=blog&id=217991
正态分布的规律,均值X服从N(u,(σ^2)/n)因为X1,X2,X3,...,Xn都服从N(u,σ^2),正太分布可加性X1+X2...Xn服从N(nu,nσ^2).均值X=(X1+X2...Xn)
转化为标准正态分布查表.请采纳,谢谢!再问:那个第二步是怎么来的再问:你学错了再问:写再答:
服从正态分布的随机变量的线性组合仍然服从正态分布,所以样本均值(X-Y)服从N(0,36)分布,(注:X-Y服从N(u1-u2,(σ1^2)/n1+(σ2^2)/n2).剩下的就是求正态分布的概率问题
单个个体的值的样本服从正态分布N(μ,σ2)啊,因为是从这个总体中找的X呀.