设总体x服从正态分布(0,2^2),x1,....x12来自x的样本

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:51:11
设总体x服从正态分布(0,2^2),x1,....x12来自x的样本
以Φ(x)表示标准正态总体在区间(-∞,x)内取值的概率,设随机变量ξ服从标准正态分布N(0,1),已知Φ(-1.96)

解法一:∵ξ~N(0,1)∴P(|ξ|<1.96)=P(-1.96<ξ<1.96)=Φ(1.96)-Φ(-1.96)=1-2Φ(-1.96)=0.948解法二:因为曲线的对称轴是直线x=0,所以由图知

概率论与数理统计设随机变量X服从正态分布N(0,1),Y服从正态分布N(0,1),且X,Y相互

设A=E(X^2/(X^2+Y^2)),B=E(Y^2/(X^2+Y^2)),A+B=1,A-B=0.所以...A=0.5

设随机变量X服从正态分布,且X~N(-3,4),则连续型随机变量Y=()服从标准正态分布N(0,1)

Y=(X+3)/2由X~N(-3,4)知,μ=-3,σ=2.则Y=(X-μ)/σ=(X+3)/2服从标准正态分布N(0,1)

设随机变量X与Y相互独立,且X服从正态分布N(0,4),Y服从正态分布N(0,9),则随机变量2X^2-Y^2的方差为多

你先求出那个啥f(x、y)等于多少,然后再E(U(x、y))=∫U(x、y)f(x、y)dxdy就可以了再问:。。。你这个方法复杂了,我已经做出来了

概率高手请进设随机变量X服从正态分布N~(0,1),Y服从正态分布N~(1,4),且相关系数=1则:答案P{Y=2X+1

回答:设他们的概率密度分别是f(x)和f(y),分布函数分别是F(x)和F(y).那么f(x=1)≠f(y=3).注意不等号“≠”.但是F(x=1)=F(y=3).注意等号“=”.一个变量X的概率“密

设随机变量X服从正态分布N(μ,σ^2),已知P(X

P(x0)=0898f就是那个圈加一竖(ps:莫非也是seu的孩纸==)

设连续随机变量X服从标准正态分布N(0,1),求Y=1-2X的概率密度函数

正态分布的线性函数还是正态分布E(Y)=E(1-2X)=1-2EX=1D(Y)=D(1-2X)=4D(X)=4故Y~N(1,4)

总体服从正态分布 为什么样本均值服从正态分布?出自哪里?

这个是统计学中的一个基本定理,与“大数定律及中心极限定律”无关,是正态分布的性质.可以看关于统计学中关于“抽样分布定理”的内容.

设总体X服从正态分布X~N(μ,σ^2),X1,X2,...,Xn为来自该总体的一个样本,

U=n^(1/2)*(xˉ-μ)/σ服从标准正态分布,即UN(0,1),因此,D(U)=1.

设总体X服从正态分布X~N(μ,σ^2),X1,X2,...,Xn为来自该总体的一个样本,则样本均值是

样本均值?那不直接是(X1+.+Xn)/n不过应该不是问这个吧可以说详细点?再问:是等于N(μ,σ^2)吗再答:有完整的题目么?这个X~N(μ,σ^2)意思是总体X服从总体均值为μ,总体标准差为σ的正

设总体Y服从正态分布N(0,a),x1,x2,x3,x4为其样本,试问n=(x1-x2)^2/(x3+x4)^2服从什么

服从F(1,1)分布总体Y服从正态分布N(0,a),x1,x2,x3,x4为其样本.这句话说明了x1,x2,x3,x4相互独立,且都服从正态分布N(0,a),又由于独立的两态分布随机变量的线性组合仍是

设随机变量X与Y独立,且X服从均值为1、标准差(均方差)为2的正态分布,而Y服从标准正态分布.

由已知X服从均值为1、标准差(均方差)为2的正态分布,所以X−12~N(0,1),E(X)=1,D(X)=2;由Y服从标准正态分布,所以:Y~N(0,1),E(Y)=0,D(Y)=1;又X、Y相互独立

设总体X服从正态分布N(u,σ^2) ,X1,X2,X3,...,Xn 是它的一个样本,则样本均值A的方差是 ? (需要

正态分布的规律,均值X服从N(u,(σ^2)/n)因为X1,X2,X3,...,Xn都服从N(u,σ^2),正太分布可加性X1+X2...Xn服从N(nu,nσ^2).均值X=(X1+X2...Xn)

设两个总体X与Y相互独立都服从正态分布N(30,20^2)(X1,X2,…,X20),(Y1,Y2,…,Y25)分别为来

服从正态分布的随机变量的线性组合仍然服从正态分布,所以样本均值(X-Y)服从N(0,36)分布,(注:X-Y服从N(u1-u2,(σ1^2)/n1+(σ2^2)/n2).剩下的就是求正态分布的概率问题

设随机变量X服从正态分布N(0,σ^2),若P{|X|>k},试求P{X<k}

P{|X|>k}=0.1P{X<k}=1-P{|X|>k}/2=0.95

关于概率论正态分布?如果说总体服从正态分布N(μ,σ2 ). 样本容量为10,那么X拔服从N(μ,σ2/10),那么其中

单个个体的值的样本服从正态分布N(μ,σ2)啊,因为是从这个总体中找的X呀.