设总体x服从正态分布 求均值X大于 概率

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:26:49
设总体x服从正态分布 求均值X大于 概率
一道概率题设总体分布X服从正态分布N(10,3²),X1,X2.,X6是它的一组样本,(x一横)是平均值,求(

x一~(10,3²/6)P(x一>11)=P((x一-10)/根号下1.5>(11-10)/根号下1.5)=1-标准正太(1/根号下1.5)计算查表得出结果

设两个随机变量X,Y相互独立,且都服从均值为0,方差为1/2的正态分布,求随机变量|X-Y|的方差.

分析:这个直接求,有直接定理E(X)=E(Y)=u=0Z=X-YE(|Z|)=(2/√2π)∫ze^(-z^2/2)dz=√(2/π)D(X)=D(Y)=1/2D(|X-Y|)=E(|X-Y|^2)-

设X和Yshi相互独立且都服从均值为0,方差为1/2的正态分布求随机变量|X-Y|的方差

真正的|X-Y|的方差要比这样算的小很多...定义I{x>y}=1如果x>y;否则为0I{x

设X~ε(λ),X1,X2,……是来自总体X的随机变量,和总体X独立的随机变量N服从均值为1/P的几何分布,求Y=(X1

这题就是把N从常量整数变成变量,如果是常量整数,Y服从正态分布,变成变量整数其实也服从正态分布,但此时E(Y)跟D(Y)就变了.但是也很好求,只是比较麻烦.E(X)=λ,D(X)=ε平方,E(N)=1

总体服从正态分布,其样本方差与样本均值独立吗?还是需要总体服从标准正态分布

不需要,谁和说总体服从正态分布时,样本方差和样本均值独立了啊?

已知总体Y服从正态分布N(u,1),且Y=lnX,求X的期望E(X)

E(X)=∫(-∞,∞)e^y*(1/2π)^(1/2)*e^((y-u)/2)^2dy=e^(1/2+u)

总体服从正态分布 为什么样本均值服从正态分布?出自哪里?

这个是统计学中的一个基本定理,与“大数定律及中心极限定律”无关,是正态分布的性质.可以看关于统计学中关于“抽样分布定理”的内容.

设总体X服从正态分布X~N(μ,σ^2),X1,X2,...,Xn为来自该总体的一个样本,

U=n^(1/2)*(xˉ-μ)/σ服从标准正态分布,即UN(0,1),因此,D(U)=1.

设总体X服从正态分布X~N(μ,σ^2),X1,X2,...,Xn为来自该总体的一个样本,则样本均值是

样本均值?那不直接是(X1+.+Xn)/n不过应该不是问这个吧可以说详细点?再问:是等于N(μ,σ^2)吗再答:有完整的题目么?这个X~N(μ,σ^2)意思是总体X服从总体均值为μ,总体标准差为σ的正

设总体X服从区间(-1,1)上均匀分布,X1,X2,……Xn来自总体X的样本,求样本均值的数学期望和方差

设X1X2...Xn为来自总体X的样本,总体X服从参数为λ的指数分布,即f(x,λ)=λexp(-λx)求X(1)和X(n)_百度知道设X1X2...Xn为来自总体X的样本,总体X服从参数为λ的指数分

设X和Y相互独立,都服从均值为0,方差为0.5的正态分布,为啥X-Y~N(0,1)

X和Y相互独立,都服从均值为0,方差为0.5的正态分布,则由性质可得到:X-Y也是一正态分布.这点高数书上有.由均值的性质可以得到X-Y的均值=X的均值-Y的均值,故X-Y的均值为0由方差的性质可以得

设随机变量X与Y独立,且X服从均值为1、标准差(均方差)为2的正态分布,而Y服从标准正态分布.

由已知X服从均值为1、标准差(均方差)为2的正态分布,所以X−12~N(0,1),E(X)=1,D(X)=2;由Y服从标准正态分布,所以:Y~N(0,1),E(Y)=0,D(Y)=1;又X、Y相互独立

设总体X服从正态分布N(u,σ^2) ,X1,X2,X3,...,Xn 是它的一个样本,则样本均值A的方差是 ? (需要

正态分布的规律,均值X服从N(u,(σ^2)/n)因为X1,X2,X3,...,Xn都服从N(u,σ^2),正太分布可加性X1+X2...Xn服从N(nu,nσ^2).均值X=(X1+X2...Xn)

设总体X服从自由度为m的伽方分布,(X1,X2...Xn)是其中一个样本,求样本均值的密度函数

1.由伽方分布的性质有:\x0dY=X1+X2+...+Xn服从自由度为nm的伽方分布,记其密度为fY(t).\x0d2.样本均值Z=Y/n,Z的分布函数记为FZ(z)=P{Z<=z}=P{Y&