设总体x服从正态分布

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 21:14:23
设总体x服从正态分布
以Φ(x)表示标准正态总体在区间(-∞,x)内取值的概率,设随机变量ξ服从标准正态分布N(0,1),已知Φ(-1.96)

解法一:∵ξ~N(0,1)∴P(|ξ|<1.96)=P(-1.96<ξ<1.96)=Φ(1.96)-Φ(-1.96)=1-2Φ(-1.96)=0.948解法二:因为曲线的对称轴是直线x=0,所以由图知

一道概率题设总体分布X服从正态分布N(10,3²),X1,X2.,X6是它的一组样本,(x一横)是平均值,求(

x一~(10,3²/6)P(x一>11)=P((x一-10)/根号下1.5>(11-10)/根号下1.5)=1-标准正太(1/根号下1.5)计算查表得出结果

概率题设已知变量X服从正态分布N

E(Y)=E(200X185)=2185,D(Y)=200²D(X)=100²,P{2070<P<2300}=P{(2070-2185)/100<(Y-2185)/100<(230

设随机变量X和Y都服从正态分布,则(X,Y)一定服从二维正态分布吗?

不独立的话,函数形状在三维空间就不是那种草帽型扩散的函数相互独立联合密度里新的指数是-{(x-u1)^2/o^1+(y-u2)^2/o2^2}(x,y)在圆心为(u1,u2),双轴比例为o1,o2的所

设随机变量X服从正态分布N(μ,σ^2),已知P(X

P(x0)=0898f就是那个圈加一竖(ps:莫非也是seu的孩纸==)

总体服从正态分布,其样本方差与样本均值独立吗?还是需要总体服从标准正态分布

不需要,谁和说总体服从正态分布时,样本方差和样本均值独立了啊?

已知总体Y服从正态分布N(u,1),且Y=lnX,求X的期望E(X)

E(X)=∫(-∞,∞)e^y*(1/2π)^(1/2)*e^((y-u)/2)^2dy=e^(1/2+u)

总体服从正态分布 为什么样本均值服从正态分布?出自哪里?

这个是统计学中的一个基本定理,与“大数定律及中心极限定律”无关,是正态分布的性质.可以看关于统计学中关于“抽样分布定理”的内容.

设总体X服从正态分布X~N(μ,σ^2),X1,X2,...,Xn为来自该总体的一个样本,

U=n^(1/2)*(xˉ-μ)/σ服从标准正态分布,即UN(0,1),因此,D(U)=1.

设总体X服从正态分布X~N(μ,σ^2),X1,X2,...,Xn为来自该总体的一个样本,则样本均值是

样本均值?那不直接是(X1+.+Xn)/n不过应该不是问这个吧可以说详细点?再问:是等于N(μ,σ^2)吗再答:有完整的题目么?这个X~N(μ,σ^2)意思是总体X服从总体均值为μ,总体标准差为σ的正

设总体Y服从正态分布N(0,a),x1,x2,x3,x4为其样本,试问n=(x1-x2)^2/(x3+x4)^2服从什么

服从F(1,1)分布总体Y服从正态分布N(0,a),x1,x2,x3,x4为其样本.这句话说明了x1,x2,x3,x4相互独立,且都服从正态分布N(0,a),又由于独立的两态分布随机变量的线性组合仍是

请问随机变量X服从正态分布

就是满足正态分布的性质.

设总体X服从正态分布N(u,σ^2) ,X1,X2,X3,...,Xn 是它的一个样本,则样本均值A的方差是 ? (需要

正态分布的规律,均值X服从N(u,(σ^2)/n)因为X1,X2,X3,...,Xn都服从N(u,σ^2),正太分布可加性X1+X2...Xn服从N(nu,nσ^2).均值X=(X1+X2...Xn)

某次测量中,测量结果服从正态分布N(1,4)求正太总体x在区间(-1,1)内取值概率.

转化为标准正态分布查表.请采纳,谢谢!再问:那个第二步是怎么来的再问:你学错了再问:写再答:

设两个总体X与Y相互独立都服从正态分布N(30,20^2)(X1,X2,…,X20),(Y1,Y2,…,Y25)分别为来

服从正态分布的随机变量的线性组合仍然服从正态分布,所以样本均值(X-Y)服从N(0,36)分布,(注:X-Y服从N(u1-u2,(σ1^2)/n1+(σ2^2)/n2).剩下的就是求正态分布的概率问题

关于概率论正态分布?如果说总体服从正态分布N(μ,σ2 ). 样本容量为10,那么X拔服从N(μ,σ2/10),那么其中

单个个体的值的样本服从正态分布N(μ,σ2)啊,因为是从这个总体中找的X呀.