设总体X服从参数,的指数分布,其概率密度为矩估计量,最大似然估计量?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:58:28
xi独立同分布F1x=MAX(x1,x2,.)=(f(x,λ))^n,然后根据期望的定义求相应的积分就是了,但是要注意指数分布当x《0时f=0
参数为1,就是λ为1
X的概率密度函数:fX(x)={e^-x,x>0{0,x0时,有FY(y)=P{X^2≤y}=P{-√y≤x≤√y}=∫(-√y→√y)fX(x)dxfY(y)=d[FY(y)]/dy=d[∫(-√y
答案是2/(Y*Y*Y)求函数的概率密度有一个公式,如果Y(X)的导数是非0的,则可以用这个公式.这个题Y关于X的导数是大于0的,所以:(1)求Y关于X的函数的反函数,此题Y的反函数就是:Y的对数;(
解法的要点如下图,先找出分布函数的关系.经济数学团队帮你解答,请及时采纳.谢谢!
E(X)=1Ee^(-2x)=∫(0~无穷)e^(-2x)e^(-x)dx=-e^(-3x)/3|(0~无穷)=1/31+1/3=4/3再问:期望的定义式不是E(X)=∫xf(x)dx,f(x)为密度
指数分布的期望为参数的倒数,所以EX=1/2,EY=1/4故E(2X)=1,E(3Y)=3/4
X服从参数λ为的指数分布,则:EX=1/λ,X有分布函数:F(x)=1-e^(-λx),x>=0;于是P(X>EX)=1-P(X
大数定律:一组相互独立且具有有限期望与方差的随机变量X1,X2,…,Xn,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值.这里X21,X22,…,X2n满足大数定律的条件,且EX2i
由题设,X服从参数为λ的指数分布,知:DX=1λ2,λ>0,于是:P{X>DX}=P{X>1λ}=∫+∞1λλe−λxdx=−e−λx| +∞1λ=1e.
F(y)=P(Y≤y)=P(1-exp(-2X)≤y)=P(X≤-ln(1-y)/2)=∫[0,-ln(1-y)/2]2exp(-2x)dx=y0
(1).f(x)=3e^(-3x),x>0;f(x)=0,其他.y1时,FY(y)=P(Y
设u=x+y,v=x/(x+y),算u,v的联合分布之后再求边际分布.
/>∵X服从参数为1的指数分布,∴X的概率密度函数f(x)=e-x,x>00,x≤0,且EX=1,DX=1,∴Ee-2x=∫+∞0e-2x•e-xdx=-13e-3x|+∞0=13,于是:E(X+e-
P(Y=0)=P(X>1)=e^(-1)P(Y=1)=P(X
x再问:跟[X](X取整)没有关系吗?你的解答没有体现取整再答:x