设总体x服从几何分布求M=max

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:55:36
设总体x服从几何分布求M=max
一道概率论的题目,设X与Y相互独立,都服从几何分布P{X=k}=p*(q的k次幂),k=0,1,2. 求Z=X

我感觉应该用定义,因为X、Y服从几何分布,有p=1-q由于X与Y相互独立,有P{Z=k}=P{X=0,Y=k}+P{X=1,Y=k-1}+...+P{X=k,Y=0}=(p*q^0)*(p*q^k)+

设X~ε(λ),X1,X2,……是来自总体X的随机变量,和总体X独立的随机变量N服从均值为1/P的几何分布,求Y=(X1

这题就是把N从常量整数变成变量,如果是常量整数,Y服从正态分布,变成变量整数其实也服从正态分布,但此时E(Y)跟D(Y)就变了.但是也很好求,只是比较麻烦.E(X)=λ,D(X)=ε平方,E(N)=1

设随机变量X服从二项分布B(3,0.4),求随机变量Y=X(X-2)的概率分布

X服从B(3,0.4),故X可取值为0,1,2,3当X=0时,Y=0当X=1,Y=-1当X=2,Y=0当X=3,Y=3所以,Y是个离散型随机变量,可取的值为-1,0,3P(Y=-1)=P(X=1)=C

设随机变量x服从参数为p的几何分布,M>0为整数,Y=max(X,M),求E(Y)

用随机变量函数的期望公式.请采纳,谢谢!

设随机变量X,Y独立,都服从几何分布P(X=k)=P(Y=k)=p(1-p)^k,k=0,1,……求X的期望和方差

期望与方差的计算如图,需要用到级数的求和法.经济数学团队帮你解答,请及时采纳.

概率论大数定理设总体X服从参数为2的泊松分布、X1,X2`````Xn为来自总体X的一个样本,则当n→∞,Yn=1/n(

Yn的极限应该是6吧.这里的Yn其实就是样本的二阶原点矩,记为A2.其一阶原点矩为1/n(X1+X2+……+Xn),记为A1.其二阶中心矩记为S^2.它们之间的关系为A2-A1^2=S^2.又因为X服

一道大学概率论问题设总体X服从参数为m,p的二项分布,m已知,p未知,(x1,.Xn)是来自总体X的一个简单随机样本,求

该样本遵从二项分布,则可先写出其分布律,然后将n个这样分布律联乘,之后这个连乘的函数取对数,再对取完对数后得到的函数对变量p求导,并令其等于零,得到的p就是其最大似然估计量,如果取完对数后得到的函数对

设总体X服从参数为λ的普阿松分布(泊松分布),它的分布律为:

首先写出似然函数LL=∏p(xi)=∏{[(λ^xi)/(xi!)]·e^(-λ)}=e^(-nλ)·∏{[(λ^xi)/(xi!)]=e^(-nλ)·λ^(∑xi)·∏1/(xi!)然后对似然函数取

设随机变量X服从参数为p的几何分布,试证明:E(1/X)=(-plnp)/(1-p)

X和1/X对应的概率是一样的,都是p*(1-p)^(n-1),那么E(1/X)=∑(1/k)*p*(1-p)^(k-1),其中,k从1到无穷.E(1/X)=p/(1-p)∑[(1-p)^k]/k=p/

设随机变量X服从指数分布,求随机变量Y=min(X,2)的分布函数

可以利用Y与X的关系如图求出分布函数.经济数学团队帮你解答,请及时采纳.再问:再问:能不能帮我在做一下50题再答:这个我不会。前面的问题已经解决,请采纳!

概率求期望与方差.题目是:设随机变量X服从几何分布,其分布率为:P(X=k)=p(1-p)^(k-1),k=1,2,.,

几何分布唉,看书吧,书上有详细的解释.真想不通,网络比书更好吗?再问:问题是这是习题,书上没详解只有答案,不然我也就不会问了。再答:超几何分布的均值:  对X~H(n,M,N),E(x)=nM/N  

设x,y是相互独立同服从几何分布的随机变量,即它们共同的分布率为p(x=k)=pq^(k-1),

解答过程如图,写出Z1,Z2取值与X,Y取值的关系就可计算了.经济数学团队帮你解答,请及时采纳.谢谢!

随机变量x服从几何分布,其分布律为P(x=k)=p(1-p)^(k-1),k=1,2...,求E(x),D(x),

下面的计算利用幂级数展开式(通过1/(1-x)=∑{k,0,∞}x^k,x∈(-1,1)容易证明):1/(1-x)²=1+2x+3x²+4x³+…=∑{k,0,∞}(k+

概率论求解答.设随机变量X服从标准正态分布,求随机变量Y=1-2|X|的分布密度.

再问:为什么那里要加绝对值?再答:公式。针对单调增和单调减

设总体X服从自由度为m的伽方分布,(X1,X2...Xn)是其中一个样本,求样本均值的密度函数

1.由伽方分布的性质有:\x0dY=X1+X2+...+Xn服从自由度为nm的伽方分布,记其密度为fY(t).\x0d2.样本均值Z=Y/n,Z的分布函数记为FZ(z)=P{Z<=z}=P{Y&