设总体X服从[0.1均匀分布]fx等

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 20:24:36
设总体X服从[0.1均匀分布]fx等
设随机变量X在[0,1]上服从均匀分布,Y在[2,4]上服从均匀分布,且X与Y相互独立,则D(XY)=

均匀分布的期望方差公式都记得吧,套用一下就行了EX=1/2EY=3X与Y相互独立所以EXY=EXEY=3/2E(XY)²=∫(0到1)dx∫(2到4)1/2x²y²dy=28/

设二维随机变量(X,Y)在区域D上服从均匀分布,其中D:0

因为二维随机变量(X,Y)在区域D上服从均匀分布,所以当(x,y)∈D时,概率密度f(x,y)为区域D的面积的倒数,当(x,y)不在D内时,f(x,y)为0因为D:0

大学概率论试题答案:设随机变量X在区间(1,2)上服从均匀分布试求

回答:随机变量X的概率密度为f(x)=1/(2-1)=1,(1

概率论!设随机变量X服从[1,4]上的均匀分布,则P{X>2}=?谢谢!

既然是均匀分布,可以利用几何概型的方法所以,所求的概率为:P(x>2)=(4-2)/(4-1)=2/3再问:麻烦看下私信,谢谢!再答:哦,好的。

设(X,Y)服从下列区域D上的均匀分布,其中D:x>=y,0

可以计算出D的面积为1/2所以(X,Y)的密度函数为f(x,y)=2(x,y)∈D而P(X+Y=y.0

一道概率论题目设总体X服从(0,θ)上的均匀分布,从X中抽取容量为1的样本X1,则θ的无偏估计量是()A.U=X1,B.

注意EX1=EX=(0+θ)/2=θ/2(均匀分布的数字特征),所以有E(2X1)=θ,故选B

设总体X服从区间(-1,1)上均匀分布,X1,X2,……Xn来自总体X的样本,求样本均值的数学期望和方差

设X1X2...Xn为来自总体X的样本,总体X服从参数为λ的指数分布,即f(x,λ)=λexp(-λx)求X(1)和X(n)_百度知道设X1X2...Xn为来自总体X的样本,总体X服从参数为λ的指数分

设X与Y是相互独立随机变量,X服从均匀分布U[0,1/5].

1、概率密度f(x,y)=f(x)*f(y)=25e^(-5y)0

设随机变量X,Y服从均匀分布(0,3)求E[min(X,Y)]

记Z=min(X,Y)],X分布函数F1(x),Y分布函数F2(y),F1=F2Z分布函数F(z)=P[Zz]=1-P[min(X,Y)>z]=1=P[X>z,Y>z]=1-P(X>z)P(Y>z)=

概率论:设(X,Y)服从下列区域D上的均匀分布,求p{X+Y

既然是均匀分布,用D1的面积占D的面积的比例更简单,一看就知道答案是1/2再问:请教,这个积分解的过程是什么,我解出来总是带x,答案是含有y的一个值再答:常数的积分是这个常数值乘以区间长度,也就是4*

设随机变量x服从【0,1】上均匀分布,求Y=e^x的概率密度!

FY(y)=P{Y小于等于y}=P{e*X小于等于y}=P{X小于等于lny}=FX(lny)fY(y)=fX(lny)(1/y)所以当0

设随机变量XY相互独立,都服从(0.1)的均匀分布,求z=x+y的密度函数.

fZ(z)=∫(-∞→+∞)fX(x)fY(z-x)dx(1)z<0fZ(z)=∫(-∞→+∞)fX(x)fY(z-x)dx=0(2)0≤z<1fZ(z)=∫(0→z)1·1dx=z(3)1≤z<2f

设总体X服从区间(a,b)上的均匀分布,X1,X2,······Xn是来自总体X的一个样本,则样本均值的方差为

DX拔=DX/n=(b-a)^2/12n再问:为什么分母有一个n呢再答:DX拔=DX/n样本均值的期望=总体的期望样本均值的方差=n分之总体方差