设总体X~π(λ)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:29:20
设总体X~π(λ)
概率论 设总体X的概率密度f(x)=(a+1)x^n 0

如果题目没错的话,就是这么做的

设X~ε(λ),X1,X2,……是来自总体X的随机变量,和总体X独立的随机变量N服从均值为1/P的几何分布,求Y=(X1

这题就是把N从常量整数变成变量,如果是常量整数,Y服从正态分布,变成变量整数其实也服从正态分布,但此时E(Y)跟D(Y)就变了.但是也很好求,只是比较麻烦.E(X)=λ,D(X)=ε平方,E(N)=1

设X1,X2...,Xn是取自总体X~E(X)的一个样本,求样本X1,X2...Xn的联合概率密度;求总体参数λ的矩估计

首先应该是e(入)fxi(xi)=入e^(-入xi)i∈{1,2,...n}把所有乘一起,设联合密度=pp(x1,x2,x3.,xn)=入^ne^(-入nx)注意下面这个E(X)是期望值E(X)=1/

设X1,X2,……Xn是总体X的样本,总体方差存在,X拔是样本均值,求X1与X拔的相关系数

给你点提示,你就能做出来了,D(X1+X拔)=D(X1)+D(X拔)+2Cov(X1,X拔)式中,D(X1+X拔)=D[(1+1/n)X1+1/n(X2+X3+……Xn)]=(1+1/n)^2D(X1

设X1 X2 ...Xn为来自总体X的样本,总体X服从参数为λ的指数分布,即X~f(x,λ)=λexp(-λx) 求X(

xi独立同分布F1x=MAX(x1,x2,.)=(f(x,λ))^n,然后根据期望的定义求相应的积分就是了,但是要注意指数分布当x《0时f=0

设总体X服从参数为λ的泊松分布,其中λ为未知参数.X1,X2,...,Xn为来自该总体的一个样本,则参数λ的矩估计量为?

X服从参数为λ的泊松分布,EX=λ.把EX换成一阶样本矩Xˉ,即得矩估计量为λ^=Xˉ.

设总体X,X1,X2...Xn是取自总体X的一个样本,A为样本均值,则不是总体期望μ的无偏估计的是?

选B,因为他的期望不是是uE(A)=uE(X1+X2+X3)=E(X1)+E(X2)+E(X3)=3uE(0.2X1+0.3X2+0.5X3)=0.2E(X1)+0.3E(X2)+0.5E(X3)=u

概率论依概率收敛问题设总体X~π(2),X1,X2.Xn是来自总体X的样本,则当n→∞时,1/n ∑Xi^2依

依概率收敛于E(X²)=D(X)+E²(X)=2+4=6E[Σ(Xi-X均值)²/(n-1)]=s²=no²/(n-1)E[Σ(Xi-X均值)

设总体X服从参数为λ的普阿松分布(泊松分布),它的分布律为:

首先写出似然函数LL=∏p(xi)=∏{[(λ^xi)/(xi!)]·e^(-λ)}=e^(-nλ)·∏{[(λ^xi)/(xi!)]=e^(-nλ)·λ^(∑xi)·∏1/(xi!)然后对似然函数取

设总体X服从参数为λ的泊松分布,X1.Xn是X的简单随机样本.求证:1/2(x的平均

求证什么?看不懂你的意思 你把题目打清楚点,我看看 就算这个统计量的方差是否是λ这里有

求Ө的极大似然估计,设总体X的概率密度为f(x

设总体X的概率密度为f(x)=Өx^(Ө-1),0

设总体X服从正态分布X~N(μ,σ^2),X1,X2,...,Xn为来自该总体的一个样本,

U=n^(1/2)*(xˉ-μ)/σ服从标准正态分布,即UN(0,1),因此,D(U)=1.

设X~π(λ),其中λ>0为未知,X1,X2,……Xn为来自总体的一个样本,求概率p=P{X=0}的

用最大似然估计法估计出λ,或用矩估计法来估计可得λ估计量=X拔=(X1+X2+…+Xn)/n最大似然估计法L(λ)=∏【i从1到n】λ^xi*e^(-λ)/xi!lnL(λ)=(x1+x2+…+xn)

设总体X~P(λ),则来自总体X的样本X1,X2.Xn的样本概率分布为

样本与总体同分步,也是P(λ),这是数理统计的规定.希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮,

设 X1,X2,X3.Xn为来自总体 X的样本,已知总体的分布密度函数为:[f(

亲爱的同学,你的题目抄写错误或图片拍摄不清晰,老师无法清楚理解题意,请重新核实你的问题再提问,谢谢!

设总体X概率密度为f(x)=3/2 *x^2,│x│

n足够大的时候,样本均值的期望不就是X的期望么,用CLT可以证明,叫什么中心极限定理什么的.Y=根号n(样本均值-E(X))/X的标准差服从Normal(0,1)分布也就是根号n倍样本均值,服从Nor