设总体X~Exp(m),求参数m的矩估计和最大似然估计

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 04:16:34
设总体X~Exp(m),求参数m的矩估计和最大似然估计
设总体X的密度函数f(),试求参数的矩法估计.

/>矩法估计思路大概就是先找出参数与期望之间的关系,然后用样本矩(样本平均数)代替期望,对参数进行估计.具体步骤如下:所以参数的估计值是样本平均数的三倍.如果还有问题再问我吧.

设X1,X2...,Xn是取自总体X~E(X)的一个样本,求样本X1,X2...Xn的联合概率密度;求总体参数λ的矩估计

首先应该是e(入)fxi(xi)=入e^(-入xi)i∈{1,2,...n}把所有乘一起,设联合密度=pp(x1,x2,x3.,xn)=入^ne^(-入nx)注意下面这个E(X)是期望值E(X)=1/

设X1 X2 ...Xn为来自总体X的样本,总体X服从参数为λ的指数分布,即X~f(x,λ)=λexp(-λx) 求X(

xi独立同分布F1x=MAX(x1,x2,.)=(f(x,λ))^n,然后根据期望的定义求相应的积分就是了,但是要注意指数分布当x《0时f=0

设总体X服从参数为λ的泊松分布,其中λ为未知参数.X1,X2,...,Xn为来自该总体的一个样本,则参数λ的矩估计量为?

X服从参数为λ的泊松分布,EX=λ.把EX换成一阶样本矩Xˉ,即得矩估计量为λ^=Xˉ.

一道大学概率论问题设总体X服从参数为m,p的二项分布,m已知,p未知,(x1,.Xn)是来自总体X的一个简单随机样本,求

该样本遵从二项分布,则可先写出其分布律,然后将n个这样分布律联乘,之后这个连乘的函数取对数,再对取完对数后得到的函数对变量p求导,并令其等于零,得到的p就是其最大似然估计量,如果取完对数后得到的函数对

设总体X服从参数为λ的普阿松分布(泊松分布),它的分布律为:

首先写出似然函数LL=∏p(xi)=∏{[(λ^xi)/(xi!)]·e^(-λ)}=e^(-nλ)·∏{[(λ^xi)/(xi!)]=e^(-nλ)·λ^(∑xi)·∏1/(xi!)然后对似然函数取

设总体X服从参数为2的指数分布,X1,X2,…,Xn为来自总体X的简单随机样本,则当n→∞时,Y

大数定律:一组相互独立且具有有限期望与方差的随机变量X1,X2,…,Xn,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值.这里X21,X22,…,X2n满足大数定律的条件,且EX2i

设总体X~(μ ,σ^2),μ ,σ^2是未知参数,(X1,X2,.Xn)是来自总体的一个样本,

1、∑(Xi-x)^2/σ^2~χ(n-1)2、样本方差S^2的定义:S^2=(1/(n-1))*∑(Xi-x)^2两者系数比较一下,选择C

设总体X~EXP(q) (x1,x2,...,xn)是来自X的样本,s2表示样本方差,求E(s2)

E(s^2)=[σ^2/[(n-1)]*E[(n-1)*S^2/σ^2]=[(n-1)*σ^2/(n-1)]=σ^2你这个题发出来确实很独特,我还要先把他解码一下,才能帮你解答.

181.设总体 的密度函数为 其中 为未知参数.为总体的一个样本,求参数 的极大似然估计量.

极大似然估计的方法:1、构造似然函数,L(x1,x2,...,xn)=每个Xi密度函数的连乘.每个Xi的密度函数与总体的密度函数相同.2、求L(x1,x2,...,xn)或lnL(x1,x2,...,

设总体x服从二项分布B(N,P),其中N已知,试求参数p的矩估计量和极大似然估计量

E[X]=NP;Var[X]=NP(1-P);矩估计:总体的一阶原点矩为E[X]=NP;样本的一阶原点矩为_X,用样本估计总体,有^p=_X/N;极大似然估计:^p=_X/N;

设总体X的密度函数为 ,现已知样本均值为 ,求参数θ的矩法估计值 .

u=∫x/(θ-5)dx=x^2/2(θ-5)│(5~θ)=(θ+5)/2而μ‘=x’故(θ‘+5)/2=12得到θ’=19

设总体X~N(0,σ^2),参数σ>0未知,X1,X2,…Xn是取自总体X的简单随机样本(n>1)

(X1,…,Xn)是个随机向量,B(n,p)是一个随机变量的分布,二者维数不同.应该是X=X1…Xn~B(n,p)就对了,前提是诸Xi彼此独立.可以直接求X的

求未知参数的矩估计 设总体x的概率密度如下,θ,u是未知参数,跪求步骤

数学期望你会算吧.三道大题计算量太大了.我说一下怎么做算了.一阶矩估计就是求数学期望.,一个参数时求一下期望就能得到了.最后的那个期望改写成x拔,那个x拔=一个含预估参数的表达式,反过来用x拔表达参数