设总体x n μ σ2,证明是的无偏估计

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:29:45
设总体x n μ σ2,证明是的无偏估计
设a>0,{Xn}满足X0>0,Xn+1=1/2(Xn+a/Xn) ,n+1是下标,n=0,1,2...,证明:{Xn}

证明:∵x(0)>0且x(n+1)=[x(n)+a/x(n)]/2∴x(n)>0∴由均值不等式知[x(n)+a/x(n)]/2≥√a即x(n+1)≥√a∴数列{x(n)}有下界.(1)又x(n+1)/

设X1,X2,...Xn是来自正态总体N(μ,σ^2)的简单随机样本

f(x1)=1/(2piσ^2)^0.5*exp[-(x1-μ)^2/2σ^2]...f(xn)=1/(2piσ^2)^0.5*exp[-(xn-μ)^2/2σ^2]L=f(x1)*f(x2)...f

设X1,X2,...Xn为来自正态总体X~N(μ,σ^2)的一个样本,μ已知,求σ^2的极大似然估计.

f(x1)=1/(2piσ^2)^0.5*exp[-(x1-μ)^2/2σ^2]...f(xn)=1/(2piσ^2)^0.5*exp[-(xn-μ)^2/2σ^2]L=f(x1)*f(x2)...f

设X1,X2,...Xn是来自正态总体X~N(μ,σ^2)的简单随机样本

因为是简单随机样本,所以各样本间相互独立,那么就有:E(X1+X2+……+Xn)=E(X1)+E(X2)+……+E(Xn)=μ+μ+……+μ=nμD(X1+X2+……+Xn)=D(X1)+D(X2)+

设总体X,X1,X2...Xn是取自总体X的一个样本,A为样本均值,则不是总体期望μ的无偏估计的是?

选B,因为他的期望不是是uE(A)=uE(X1+X2+X3)=E(X1)+E(X2)+E(X3)=3uE(0.2X1+0.3X2+0.5X3)=0.2E(X1)+0.3E(X2)+0.5E(X3)=u

设总体X~N(μ,σ2),X1…… X2n 是总体X的一个样本 令Y=∑(Xi+Xn+i-2Y)² 求EY

题干中总体X的样本均值的等式,将右侧分母上的2乘到左侧,右侧不就是解二第一行的两项相加吗?再问:在抽样分布那里有个∑EXiEXn+i=∑μ^2 。n+i是下标EXi=μ 这个我懂,

设数列{xn}满足xn+1=xn/2+1/xn,X0>0,n=0,1,2,3,...证明数列{xn}极限存在并求出其极限

注意到x(n+1)>=2√(xn/2*1/xn)=√2,且x(n+1)-xn=1/xn-xn/2=(2-xn^2)/(2xn)

设总体X~(μ ,σ^2),μ ,σ^2是未知参数,(X1,X2,.Xn)是来自总体的一个样本,

1、∑(Xi-x)^2/σ^2~χ(n-1)2、样本方差S^2的定义:S^2=(1/(n-1))*∑(Xi-x)^2两者系数比较一下,选择C

设总体X服从正态分布X~N(μ,σ^2),X1,X2,...,Xn为来自该总体的一个样本,

U=n^(1/2)*(xˉ-μ)/σ服从标准正态分布,即UN(0,1),因此,D(U)=1.

设总体X服从正态分布X~N(μ,σ^2),X1,X2,...,Xn为来自该总体的一个样本,则样本均值是

样本均值?那不直接是(X1+.+Xn)/n不过应该不是问这个吧可以说详细点?再问:是等于N(μ,σ^2)吗再答:有完整的题目么?这个X~N(μ,σ^2)意思是总体X服从总体均值为μ,总体标准差为σ的正

设总体X服从正态N(μ,σ²),x1,x2,xn为其总体的样本,求该样本的联合概率密度

fX(x)=φ((x-u)/σ)/σf(X1,X2,...Xn)=fX1(x1)fX2(x2)..fXn(xn)=(1/√(2π)σ)^n*e^Σ(xi-u)²/(2σ)如有意见,欢迎讨论,

数理统计问题总体X~N(μ,σ^2),有样本X1,X2,…Xn,设Y=0.5(Xn-X1),则Y~_____.

x1是个常数,做线性变化方差不变,均值变为y等号右边N(0.5(u-X1),delta^2)

设总体X服从正态分布N(u,σ^2) ,X1,X2,X3,...,Xn 是它的一个样本,则样本均值A的方差是 ? (需要

正态分布的规律,均值X服从N(u,(σ^2)/n)因为X1,X2,X3,...,Xn都服从N(u,σ^2),正太分布可加性X1+X2...Xn服从N(nu,nσ^2).均值X=(X1+X2...Xn)

设X1,X2,...Xn是取自正态总体X~N(μ,σ^2)的一个样本,则1/(σ^2)∑(X-μ)^2 服从的分布是()

服从X^2(n-1)分布,那个X不是未知数X,长得像而已,手机打不出来,抱歉.因为(x-u)^2求和,等于n-1倍的样本方差平方,然后就是定理了,手机不好打阿~

设总体X~N(0,σ^2),参数σ>0未知,X1,X2,…Xn是取自总体X的简单随机样本(n>1)

(X1,…,Xn)是个随机向量,B(n,p)是一个随机变量的分布,二者维数不同.应该是X=X1…Xn~B(n,p)就对了,前提是诸Xi彼此独立.可以直接求X的