设总体 是来自总体X~b(1,p)的样本,则E(x一八) _________,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 15:10:41
设总体 是来自总体X~b(1,p)的样本,则E(x一八) _________,
设X~ε(λ),X1,X2,……是来自总体X的随机变量,和总体X独立的随机变量N服从均值为1/P的几何分布,求Y=(X1

这题就是把N从常量整数变成变量,如果是常量整数,Y服从正态分布,变成变量整数其实也服从正态分布,但此时E(Y)跟D(Y)就变了.但是也很好求,只是比较麻烦.E(X)=λ,D(X)=ε平方,E(N)=1

设X1,X2,…Xn是来自二项分布总体B(n,p)的简单随机样本,.X

因为.X与S2分别为总体均值与方差的无偏估计,且二项分布的期望为np,方差为np(1-p),故E(.X)=np,E(S2)=np(1-p).从而,由期望的性质可得,E(T)=E(.X)-E(S2)=n

设总体x的分布函数为f(x),概率密度函数为f(x),(x1,x2…xn)是来自总体x的一个样本,x(1)和x(n)分别

X(1)f1(x)=n*(F(x))^(n-1)*f(x)F1(x)=(F(x))^nX(n)fn(x)=n*(1-F(x))^(n-1)*f(x)Fn(x)=(1-F(x))^n其中f(x)F(x)

大学概率与数理统计设X1,X2,.X9是来自正态总体N(μ,4)的简单随机样本,X拔是样本均值,一直P{|X拔-μ|

o=根号4=2n=9P{|X拔-μ|/(o/根号n)再问:额,我们还没讲过置信区间,μ=1.3067,答案再答:我后头不是给你写了步骤了3o换成o/3除写成乘了。。。μ/(o/3)=1.961.96*

设X1,X2,...Xn是来自正态总体X~N(μ,σ^2)的简单随机样本

因为是简单随机样本,所以各样本间相互独立,那么就有:E(X1+X2+……+Xn)=E(X1)+E(X2)+……+E(Xn)=μ+μ+……+μ=nμD(X1+X2+……+Xn)=D(X1)+D(X2)+

概率论依概率收敛问题设总体X~π(2),X1,X2.Xn是来自总体X的样本,则当n→∞时,1/n ∑Xi^2依

依概率收敛于E(X²)=D(X)+E²(X)=2+4=6E[Σ(Xi-X均值)²/(n-1)]=s²=no²/(n-1)E[Σ(Xi-X均值)

一道大学概率论问题设总体X服从参数为m,p的二项分布,m已知,p未知,(x1,.Xn)是来自总体X的一个简单随机样本,求

该样本遵从二项分布,则可先写出其分布律,然后将n个这样分布律联乘,之后这个连乘的函数取对数,再对取完对数后得到的函数对变量p求导,并令其等于零,得到的p就是其最大似然估计量,如果取完对数后得到的函数对

设总体X~(μ ,σ^2),μ ,σ^2是未知参数,(X1,X2,.Xn)是来自总体的一个样本,

1、∑(Xi-x)^2/σ^2~χ(n-1)2、样本方差S^2的定义:S^2=(1/(n-1))*∑(Xi-x)^2两者系数比较一下,选择C

设总体X~n(2,1),X1,X2… X9是来自总体X的一个样本,则X平均在区间【1,2】中取值的概率是()

答案是0.5013总体X~N(2,1),X1,X2…X9是来自总体X的一个样本,则可知X平均~N(2,1/9)从而X平均在区间[1,2]中取值的概率是P(1≤X平均≤2)=P((1-2)/(1/3)≤

设总体X服从正态分布X~N(μ,σ^2),X1,X2,...,Xn为来自该总体的一个样本,

U=n^(1/2)*(xˉ-μ)/σ服从标准正态分布,即UN(0,1),因此,D(U)=1.

设总体X服从正态分布X~N(μ,σ^2),X1,X2,...,Xn为来自该总体的一个样本,则样本均值是

样本均值?那不直接是(X1+.+Xn)/n不过应该不是问这个吧可以说详细点?再问:是等于N(μ,σ^2)吗再答:有完整的题目么?这个X~N(μ,σ^2)意思是总体X服从总体均值为μ,总体标准差为σ的正

设总体X~P(λ),则来自总体X的样本X1,X2.Xn的样本概率分布为

样本与总体同分步,也是P(λ),这是数理统计的规定.希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮,

设 X1,X2,X3.Xn为来自总体 X的样本,已知总体的分布密度函数为:[f(

亲爱的同学,你的题目抄写错误或图片拍摄不清晰,老师无法清楚理解题意,请重新核实你的问题再提问,谢谢!

设总体X~N(μ,16),X1,X2,...X9是来自该总体的一个样本,求样本方差介于6~14之间的概率

样本方差Sn运用定理(n-1)Sn^2/σ^2服从自由度为(n-1)的χ方分布代入数据(9-1)*6/16=3(9-1)*14/16=7查表+线性插入计算得P(χ^2(8)>3)=0.932P(χ^2

设总体X服从区间(a,b)上的均匀分布,X1,X2,······Xn是来自总体X的一个样本,则样本均值的方差为

DX拔=DX/n=(b-a)^2/12n再问:为什么分母有一个n呢再答:DX拔=DX/n样本均值的期望=总体的期望样本均值的方差=n分之总体方差