设在随机变量X的密度函数为X~f(x)=e^-x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 19:06:26
u=x^2P(u1
X的分布函数F(x)=∫[-inf.,x]f(t)dt=…….分段讨论: 当x0时,F(x)=∫[-inf.,0]f(t)dt+∫[0,x]f(t)dt=……,注意到F(+inf.)=1,确定A=…
F(x)=1/2,0
还有一个方程是根据总概率为1对f(x)从-∞到+∞上的积分值为1即3a/2+6b+2c=1
首先,根据x的概率密度算出p(X
如下图,需要分段积分:答案为:9/16.
先求Y的分布函数FY(y)FY(y)=P{Y≤y}=P{2X+3≤y}=P{X≤(y-3)/2}=FX[(y-3)/2]所以Y=2X+3的概率密度为:fY(y)=fX[(y-3)/2]·[(y-3)/
按定义算EX=2/3DX=1/18(非常基础的积分不公式繁就不打了)|X-2/3|>=√2/3X>=(√2+2)/3或X=(√2+2)/3或X=(√2+2)/3)+P(X
P(X≤1/2)=F(1/2)=∫3x²dxx∈(0,1/2)=x³|x∈(0,1/2)=1/8即X每次独立观察时≤1/2的概率为1/8则Y服从二项分布参数n=10k=2p=1/8
好难打这些怪符号呀,你留个邮件,我写完了然后拍成图片发到你邮箱图片已发送请查收
求采纳为满意回答.
(1).∫[-∞,+∞]f(x)dx=∫[-∞,0]Ae^xdx+∫[0,+∞]Ae^(-x)dx=A+A=1,A=1/2.(2).x=0时,F(x)=∫[-∞,0](1/2)e^tdt+∫[0,x]
不用雅可比也行,不过那个是标准过程,这里给个捷径.X的密度函数为Φ(x)那么X的分布函数我们设成F(x)当然F(x)求导=Φ(x)F(x)=P(X
EX=∫(0,1)x*3x^2dx=3/4EX^2=∫(0,1)x^2*3x^2dx=3/5所以DX=EX^2-(EX)^2=3/5-(3/4)^2=3/80
已知连续型随机变量X的密度函数,那么对其在负无穷到正无穷上进行积分的值为1所以∫(上限1,下限0)xdx+∫(上限a,下限1)2-xdx=[0.5x²(代入上限1,下限0)]+[2x-0.5
1再问:为什么啊再答:P(Y>=k)=∫{k到正无穷}f(x)dx=2/3根据f(x)的分段特点,可得1
F(y)=P{Y再问:�Ǵ���ʲô��������-f(-y)
F(x)=0(x
期望不存在如果期望存在,期望是1/x乘上密度函数f(x)在0到无穷上积分,而这个积分是不收敛的因为在0附近f(x)~1,被积函数~1/x,广义积分发散所以Y=1/x的期望不存在