设在椭圆x=acost,y=bsint上,每一点都有M都有作用力F

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 20:02:08
设在椭圆x=acost,y=bsint上,每一点都有M都有作用力F
椭圆方程的参数方程为什么是x=acost, y=bsint呢?x=bsint不行吗?

你学过三角函数线吧cos就是横坐标上的而sin是竖直的那一条

求椭圆{X=acost,Y=bsint (0≤t≤2π)的面积!

πab再问:详细过程有没有啊?再答:有再答:再答:4.3.3题

求方程x=acost三次方,y=asint三次方所表示的函数的一阶导数

dx/dt=-3acos²tsintdy/dt=3asin²tcost所表示的函数的一阶导数dy/dx=(dy/dt)/(dx/dt)=(3asin²tcost)/(-3

求参数方程dy/dx的二阶导数,x=acost,y=bsint

dy/dt=bcostdx/dt=-asintdy/dx=-(b/a)*cottd^2y/dx^2=d(dy/dx)/dx={d(dy/dx)/dt}/(dx/dt)=(b/a)*csc^2t/-as

参数方程的求导 x=acost y=bsint 为什么dx ---=-asint dy

x对t求导得dx=-asintdty对t求导得dy=bcostdtdx/dy=-asintdt/bcostdt=-a/b*tantdx=-a/b*tantdy

参数方程的求导 x=acost y=bsint为什么dx ---=-asint dy

x对t求导dx=-asintdty对t求导dy=bcostdt2式相比得dx/dy=-asintdt/bcostdt=-a/btantdx=-a/btantdy不会错的应为(常数乘以表达式)整体的导数

椭圆的参数方程为x=acost,y=bsint,求在t=π/4处的切线

dy/dt=bcostdx/dt=-asintdy/dx=-b/acot(t)=-b/acot45=-b/a所以直线等于y-(根2/2)b=-b/a(x-(根2/2)a)

求参数方程所确定函数的二阶导数x=acost,y=bsint(其中a,b为常数)

y`=dy/dx=(dy/dt)/(dx/dt)=(bcost)/(-asint)y``=d(dy/dx)/dx=[d(dy/dx)/dt]/(dx/dt)=[(bcost)/(-asint)]`/(

设在椭圆X^2/a^2+Y^2/b^2=1(a>b>0)上有一点P,它与两个焦点的连线互相垂直,求这个椭圆的离心率.

可设点P(acost,bsint),(t∈R,且sint≠0).又F1(-c,0),F2(c,0).由题设可知,向量F1P·向量F2P=0.即(acost+c,bsint)·(acost-c,bsin

对坐标的曲线积分曲线在点(X,Y)处的线密度为p=|Y|,求曲线X=acost,Y=bsint(0<t<2兀,0<b<a

所求质量M=∫[0,2π]|bsint|√[(-asint)²+(bcost)²]dt=∫[0,2π]|bsint|√[a²+(b²-a²)cos&#

X=acost Y=bsint 求函数二阶导数dy/dx

我算的有点急,你还是检查一下吧...再问:谢谢,很有帮助再问:再问:这个是什么

参数方程一个问题那个比如说x^2/a^2 +y^2/b^2 =1可以设成x=acost y=bsint 那个t是什么角度

是离心叫,用希腊字母FINE表示,并不是所在点的角度(极角)

格林定理 椭圆如何用格林定理推导出面积公式并用于椭圆x=acost,y=bsint为什么A= 1/2 * (ydx-xd

A=1/2∮xdy-ydx=1/2∫(abcost^2+absint^2)dt=1/2*ab∫dt=∏ab.(其中∫的积分是从0积到2∏.也就是t的范围是[0,2∏].高等数学书上有推导公式吧!

设曲线a=acost,y=bsint,a>b,0

dx/dt=-a*sint,dy/dt=b*cost,ds=√((dx/dt)^2+(dy/dt)^2)dt=√(a^2*sint^2+b^2*cost^2)dt其质量=∫ρds=4∫(0,π/2)b