设向量组i:x1x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 23:48:05
⑴,行列式|123||3-14||011|≠0,线性无关.类似地,⑵=0,线性相关.⑶=0,线性相关.⑷,=0,线性相关
∵向量a=(x,1),b=(4,x),且a,b方向相反,设a=λb,则λ<0,∴(x,1)=λ(4,x)即x=4λ1=λx⇒x2=4,解得x=-2,x=2(舍去),∴x的值为-2.故答案是-2.
因为a1,a2,...,an线性相关所以存在一组不全为零的数k1,k2,...,kn满足k1a1+k2a2+...+knan=0由于任意n-1个向量线性无关所以k1,k2,...,kn都不等于0(假如
1-(3i+2)=-1-3i再问:�����-1+3I�Ǵ�Ŀ���
设r=3,s=2A1=A11B1+A21B2A2=A12B1+A22B2A3=A13B1+A23B2设常数使K1A1+K2A2+K3A3=0整理等到一个齐词方程租,由于方程个数小于其未知量那么根据定理
记Q=【a1,a2,...,an】是正交阵,其中am+1,am+2,...,an和a1,...,am组成V的正交基,因此有Q^Ta模长的平方=a^TQQ^Ta=a^Ta=a的模长的平方.注意到要证不等
其实I能够被II表示,说明I的秩小于等于II的秩;若I线性无关,那么r=r(I)再问:谢了,挺好记的有个疑问:“其实I能够被II表示,说明I的秩小于等于II的秩”这个怎么证的啊?再答:从直观理解上来说
这是个常用结论:若C=AB,A列满秩,则R(C)=R(B)请参考:
向量组α2,α3,α4线性无关,则α2,α3也线性无关.又α1,α2,α3线性相关,则α1可以由α2,α32线性表示.所以α1,α2,α3的最大线性无关组是α2,α3.
证明:由已知向量组A能由向量组B线性表示所以r(B)=r(B,A).又由已知r(A)=r(B)所以r(A)=r(B,A)=r(A,B)所以向量组B能由向量组A线性表示.所以向量组A与向量组B等价.注:
依题意,|a|+|b|=4的意义是动点P到点(-√3,0),(√3,0)距离和为4.由椭圆的定义,点P的轨迹是以两定点(-√3,0),(√3,0)为左右焦点,4为长轴的椭圆,因此,短轴为2(4-3)=
设向量为列向量,若n维向量β与每个αi都正交,那么αi'*β=0(αi'表示αi的转置)即α1'*β=0α2'*β=0...αn'*β=0令矩阵A为以αi'为行的n阶方阵,i=1,2,3...n所以得
A=i+2jB=-2i+mjA∥Bm=-42A+3B=2(i+2j)+3(-2i-4j)=-4i-8j
OA=(-2,m)OB=(n,1)OC=(5,-1)AB=(n+2,1-m)BC=(5-n,-2)若点A、B、C在同一直线则向量AB、BC共线-2(n+2)=(1-m)(5-n)m=2n解上面方程组得
如果是点乘是(1)-18(2)18叉乘是(1)(-18,12,-12)(2)(18,-12,12)
题目不完整请追问再问:忘咯!没复制过来设向量组A:a1,a2,a3及向量组B:b1=3a1+2a2+2a3,b2=a1+2a2,b3=2a1+a3证明向量与A与向量B与等价再答:由已知,b1,b2,b
答:α1,α2,α3,β线性无关.设k1α1+k2α2+k3α3+kβ=0等式两边对β取内积,由已知(αi,β)=0,得k(β,β)=0又由β≠0,故(β,β)≠0,所以k=0所以k1α1+k2α2+
反证法:假设他们线性相关,则存在一组不全为0的数x1,x2,……,xm使得x1a1+x2a2+……+xmam=0从这m个数的右边数第一个不为0的数记为xk.(下标最大的不为0的数)则x(k+1),x(