设向量组i:x1x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 23:48:05
设向量组i:x1x
设向量组阿a,b,c线性无关,问以下向量组是否线性相关?

⑴,行列式|123||3-14||011|≠0,线性无关.类似地,⑵=0,线性相关.⑶=0,线性相关.⑷,=0,线性相关

设向量a

∵向量a=(x,1),b=(4,x),且a,b方向相反,设a=λb,则λ<0,∴(x,1)=λ(4,x)即x=4λ1=λx⇒x2=4,解得x=-2,x=2(舍去),∴x的值为-2.故答案是-2.

证明:设向量组a1a2a3.an线性相关,

因为a1,a2,...,an线性相关所以存在一组不全为零的数k1,k2,...,kn满足k1a1+k2a2+...+knan=0由于任意n-1个向量线性无关所以k1,k2,...,kn都不等于0(假如

数学复数、设Z=3i+2、则1-Z向量=多少.为什么等于-1+3i

1-(3i+2)=-1-3i再问:�����-1+3I�Ǵ�Ŀ���

线性代数证明,设向量组(I)a1,a2,.,ar能由向量组(II)β1,β2,.βs线性表出,当r>s时,向量组(I)线

设r=3,s=2A1=A11B1+A21B2A2=A12B1+A22B2A3=A13B1+A23B2设常数使K1A1+K2A2+K3A3=0整理等到一个齐词方程租,由于方程个数小于其未知量那么根据定理

线性代数题欧式空间设a1,a2…am是n维欧式空间V的一个标准正交向量组.证明对V中任意向量a有【求和(i从1开始到m)

记Q=【a1,a2,...,an】是正交阵,其中am+1,am+2,...,an和a1,...,am组成V的正交基,因此有Q^Ta模长的平方=a^TQQ^Ta=a^Ta=a的模长的平方.注意到要证不等

一道线性代数题的理解设向量组I:α1,α2 ,...,αr可由向量组II:β1,β2 ,...βs线性表示若向量组I线性

其实I能够被II表示,说明I的秩小于等于II的秩;若I线性无关,那么r=r(I)再问:谢了,挺好记的有个疑问:“其实I能够被II表示,说明I的秩小于等于II的秩”这个怎么证的啊?再答:从直观理解上来说

设向量组a1,a2,a3线性无关,则下列向量组线性相关的是

这是个常用结论:若C=AB,A列满秩,则R(C)=R(B)请参考:

向量租的秩 设向量租a1,a2,a3线性代数,而向量租a2,a3,a4线性无关,则向量组a1,a2

向量组α2,α3,α4线性无关,则α2,α3也线性无关.又α1,α2,α3线性相关,则α1可以由α2,α32线性表示.所以α1,α2,α3的最大线性无关组是α2,α3.

设向量组A与向量组B的秩相等,且向量组A能由向量组B线性表示,证明向量组A与向量组B等价?

证明:由已知向量组A能由向量组B线性表示所以r(B)=r(B,A).又由已知r(A)=r(B)所以r(A)=r(B,A)=r(A,B)所以向量组B能由向量组A线性表示.所以向量组A与向量组B等价.注:

已知向量i,j是x,y轴正方向的单位向量 ,设向量a=(x-跟号3)i+yj ,向量b=(x+跟号3)i+yj 且满足|

依题意,|a|+|b|=4的意义是动点P到点(-√3,0),(√3,0)距离和为4.由椭圆的定义,点P的轨迹是以两定点(-√3,0),(√3,0)为左右焦点,4为长轴的椭圆,因此,短轴为2(4-3)=

设n维向量组α1,α2,...,αn线性无关,证明:若n维向量β与每个αi(i=1,2,...,n)都正交,则β=0

设向量为列向量,若n维向量β与每个αi都正交,那么αi'*β=0(αi'表示αi的转置)即α1'*β=0α2'*β=0...αn'*β=0令矩阵A为以αi'为行的n阶方阵,i=1,2,3...n所以得

设向量i、向量j分别是平面直角坐标系Ox,Oy正方向上的单位向量,且向量OA=-2+m向量j,向量OB=n向量i+向量j

OA=(-2,m)OB=(n,1)OC=(5,-1)AB=(n+2,1-m)BC=(5-n,-2)若点A、B、C在同一直线则向量AB、BC共线-2(n+2)=(1-m)(5-n)m=2n解上面方程组得

设向量a=3i-j+2k,向量b=i+2j+k,计算:(1)(-2a)*(3b) (2)3a*2b

如果是点乘是(1)-18(2)18叉乘是(1)(-18,12,-12)(2)(18,-12,12)

设向量组:及向量组:,证明向量与与向量与等价

题目不完整请追问再问:忘咯!没复制过来设向量组A:a1,a2,a3及向量组B:b1=3a1+2a2+2a3,b2=a1+2a2,b3=2a1+a3证明向量与A与向量B与等价再答:由已知,b1,b2,b

线性相关性的证明题!设向量组α1,α2,α3线性无关,向量β≠0满足(αi,β)=0,i=1,2,3,判断向量组α1,α

答:α1,α2,α3,β线性无关.设k1α1+k2α2+k3α3+kβ=0等式两边对β取内积,由已知(αi,β)=0,得k(β,β)=0又由β≠0,故(β,β)≠0,所以k=0所以k1α1+k2α2+

设向量组a1,a2,a3.am中a1不等于0,且每个ai不是看它前面i-1个向量的线性组合,证明:a1,a2,.am线性

反证法:假设他们线性相关,则存在一组不全为0的数x1,x2,……,xm使得x1a1+x2a2+……+xmam=0从这m个数的右边数第一个不为0的数记为xk.(下标最大的不为0的数)则x(k+1),x(