设向量组B:b1,b2,l,br,能由向量组A:a1,a2,l,as线性表示
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 00:08:14
向量组B线性无关(b1,b2,...,br)X=0只有零解(a1,a2,...,as)KX=0只有零解--因为向量组A线性无关--所以KX=0只有零解r(K)=r(K的列数).再问:貌似简略了点儿,能
1+b3-b2-b4=0,所以线形相关.
必要性:假设R(A)<s,则线性方程组Ax=0有非零解,设x=(x1,……,xs)’是一个非零的s元列(其中x1,……,xs为纯量)满足Ax=0,则(a1,……,as)x=(b1,……,bt)Ax=0
向量叉乘可以认为是和点乘相对的但两者又有不同点乘结果是一个常数叉乘结果是一个向量点乘的模=a的模*b的模*cos夹角叉乘的模=a的模*b的模*sin夹角你学过行列式么这个是大学解析几何的内容将两个向量
题目中K应该是nXr矩阵.首先,r(b1,b2,...,br)=r[(a1,a2,...,an)K]再问:r(AB)
(b1,b2,...,bk)=(a1,a2,...,ak)K其中K=100...0(-1)^kλ-λ10...000λ1...00.........000...10000...(-1)^(k-1)λ1
这个没法求得,这个“矩阵”是1x1的,如果a1b1+a2b2+a3b3=0,则秩为0,否则为1再问:能不能给我写下过程啊谢谢你了再答:哪步需要过程?你按照矩阵乘法乘一下不就得到答案了?
因为:b1//a;所以:b1=λa;又因为:b2⊥a;b2*a=|b2|×|a|×cosθ=0(垂直是时cosθ=0);a0,所以b2=0;b=b1+b2=b1所以:b1=(1,1,1),a=(0,0
证明:由已知,(b1,b2,b3)=(a1,a2,a3)KK=111011001因为|K|=1≠0,所以K可逆所以r(b1,b2,b3)=r[(a1,a2,a3)K]=r(a1,a2,a3)=3所以b
设k1a1+..ksas+m1b1+..+msbs=0,分别左乘m1b1^T,m2b2^T,.,msbs^T,再相加得(m1b1+...+msbs)^T*(m1b1+...+msbs)=0,故m1b1
强烈抗议!机器人提问并胡乱采纳,这是在干什么!白白耽误大家的时间!
A^2=AA=(a*bT)(a*bT)==a*(bT*a)*bT(1)(结合律)由于:aT*b=0,故:[aT*b]T=0,即:bT*a=0(2)(2)代入(1),得:A^2=AA=(a*bT)(a*
向量OP=(x,sinx)向量OQ=向量m*向量OP+向量n=(2x+Pi/3,1/2sinx)Q点坐标(2x+Pi/3,1/2sinx)Q点轨迹y=1/2sin(x/2-Pi/6)最大值A=1/2,
A=(2,4,6)*xB=(3,0,1)/xx为一个常数,不影响结果因此AB'=6+6=12再问:可答案给的是9啊再答:不好意思,计算错了。A=(1,2,3)*xB=(3,0,2)/xx为一个常数,不
(C)正确.b1,b2线性无关r(B)=2r(A)=r(B)A,B等价(D)充分但不必要
方法一:b1-b2+b3=0,所以向量组B线性相关方法二:矩阵B=(b1,b2,b3)=(a1,a2,a3)C=AC,其中C=121-314-101|C|=0,所以秩(B)≤秩(C)<3,所以向量组B
由已知,A的行向量组可由a1,a2...ar线性表示当然也可由a1,a2...ar,b1,b2...bt线性表示(bi的组合系数取0即可)同理,B的行向量组可由b1,b2...bt线性表示所以也可由a
因为b4=1/3*b1+1/3*b2+1/3*b3,所以b4能用b1、b2、b3线性表出,因此,b1、b2、b3、b4线性相关.