设向量组a1,a2,-,as的秩为r,在其中任取m个向量ai1,ai2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 04:32:51
k1(a1-a2)+k2(a2-a3)=0k1a1+(k2-k1)a2-k2a3=0k1=0,k2-k1=0-k2=0k1=k2=k3=0所以a1-a2,a2-a3线性无关.设k1(a1-a2)+k2
A不对!例如:a1=(1,0,0),a2=(0,1,0)b1=(0,2,0),b2=(0,0,1)两向量组都线性无关,但不等价,谁也不能表示谁B正确.因为A,B等价,即A可经初等变换化成B初等变换不改
必要性:假设R(A)<s,则线性方程组Ax=0有非零解,设x=(x1,……,xs)’是一个非零的s元列(其中x1,……,xs为纯量)满足Ax=0,则(a1,……,as)x=(b1,……,bt)Ax=0
n维向量组的秩至多为n,向量组a1,a2,...as是线性相关的.
a1,a2...,as,as+1(s
这是个常用结论:若C=AB,A列满秩,则R(C)=R(B)请参考:
设k1a1+k2(a1+a2)+k3(a1+a2+a3)+...+ks(a1+a2+...+as)=0则(k1+k2+...+ks)a1+(k2+k3+...+ks)a2+...+ksas=0由已知a
向量组α2,α3,α4线性无关,则α2,α3也线性无关.又α1,α2,α3线性相关,则α1可以由α2,α32线性表示.所以α1,α2,α3的最大线性无关组是α2,α3.
就用题目中提出的向量a1,a2..as线性相关的意思是,存在不全为0的k1,k2...ks使得k1*a1+k2*a2+...+ks*as=0其中k1,k2...ks为实数.意思就是你只要找到一组满足条
你说的是秩吧?因为向量组的秩是r的话,则说明这个向量组中的任意一个向量都可以被r个无关向量所表示而其中任意的r+1个向量中,必然有一个极大无关组中含至少r个向量,所以第r个向量就必然是可以被这些向量线
a1+2a2,2a2+3a3,a1+2a2+3a3线性无关.r[a1+2a2,2a2+3a3,a1+2a2+3a3]可以求出来,具体为第3列减第二列,然后以此类推,变为a1,a2,a3.
应该知道这个结论吧:如果b1,b2,...,bt都能够被向量组a1,a2,...,as线性表示,那么向量组b1,b2,...,bt的秩不大于a1,a2,...,as的秩.n维向量中可以找到秩为n的向量
如果还不是很明白的话,建议查看一下极大无关组的相关概念帮助理解一下,望采纳……
如果是同一个空间的话,那么这n维向量肯定可以表示该空间的任何一个向量,因为它们是该空间的基底向量,但是如果研究空间不再是原来空间了,那就不行了.再问:是唯一不对
设k1a1+..ksas+m1b1+..+msbs=0,分别左乘m1b1^T,m2b2^T,.,msbs^T,再相加得(m1b1+...+msbs)^T*(m1b1+...+msbs)=0,故m1b1
下图为普通证法.用反证法,也很简单可以得出结论
假设线性相关,那么存在不全为0的c1、c2、……cs、d使得:c1a1+c2a2+.……+csas+d(b1+b2)=0显然d不等于0,因为等于0,那么a.就线性相关了.那么b2=(-c1a1-c2a
选BB包含了A,C秩是向量组里极大线性无关组个数Dr个也行
方法一:b1-b2+b3=0,所以向量组B线性相关方法二:矩阵B=(b1,b2,b3)=(a1,a2,a3)C=AC,其中C=121-314-101|C|=0,所以秩(B)≤秩(C)<3,所以向量组B
结论是错的,反例:α1=(1.0),α2=(0,1),α3=(2,0)s=3,r=2.{α1,α3}就不是该向量组的极大无关组.