设向量组a1,a2,-,as的秩为r,在其中任取m个向量ai1,ai2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 04:32:51
设向量组a1,a2,-,as的秩为r,在其中任取m个向量ai1,ai2
线性代数.设向量组a1,a2,a3线性无关,求a1-a2,a2-a3,a3-a1的一个最大无关组

k1(a1-a2)+k2(a2-a3)=0k1a1+(k2-k1)a2-k2a3=0k1=0,k2-k1=0-k2=0k1=k2=k3=0所以a1-a2,a2-a3线性无关.设k1(a1-a2)+k2

设n维列向量组a1,a2,---,as线性无关,则n维列向量组b1,b2,bs线性无关的充分必要条件为

A不对!例如:a1=(1,0,0),a2=(0,1,0)b1=(0,2,0),b2=(0,0,1)两向量组都线性无关,但不等价,谁也不能表示谁B正确.因为A,B等价,即A可经初等变换化成B初等变换不改

向量组证明题 设向量组(1)a1,a2,.as,能由向量组(2)b1,b2,.bt线性表示为(a1,a2,.as)=(b

必要性:假设R(A)<s,则线性方程组Ax=0有非零解,设x=(x1,……,xs)’是一个非零的s元列(其中x1,……,xs为纯量)满足Ax=0,则(a1,……,as)x=(b1,……,bt)Ax=0

设a1,a2,...as是n维向量组,如果s>n,则向量组 a1,a2,...as是线性?

n维向量组的秩至多为n,向量组a1,a2,...as是线性相关的.

设向量组a1,a2,a3线性无关,则下列向量组线性相关的是

这是个常用结论:若C=AB,A列满秩,则R(C)=R(B)请参考:

设向量组a1,a2,a3……as线性无关(s>2),试证明下面向量组向量无关:a1,a1+a2,a1+a2+a3,……a

设k1a1+k2(a1+a2)+k3(a1+a2+a3)+...+ks(a1+a2+...+as)=0则(k1+k2+...+ks)a1+(k2+k3+...+ks)a2+...+ksas=0由已知a

向量租的秩 设向量租a1,a2,a3线性代数,而向量租a2,a3,a4线性无关,则向量组a1,a2

向量组α2,α3,α4线性无关,则α2,α3也线性无关.又α1,α2,α3线性相关,则α1可以由α2,α32线性表示.所以α1,α2,α3的最大线性无关组是α2,α3.

设n维向量a1,a2,...,as,命题正确的是:如果a1,a2,...,as线性无关,那么a1+a2,a2+a3,..

就用题目中提出的向量a1,a2..as线性相关的意思是,存在不全为0的k1,k2...ks使得k1*a1+k2*a2+...+ks*as=0其中k1,k2...ks为实数.意思就是你只要找到一组满足条

设向量组a1,a2,……as的序为r,则向量组中任意r+1个向量比为线性相关?为什么

你说的是秩吧?因为向量组的秩是r的话,则说明这个向量组中的任意一个向量都可以被r个无关向量所表示而其中任意的r+1个向量中,必然有一个极大无关组中含至少r个向量,所以第r个向量就必然是可以被这些向量线

设n维向量组a1,a2,a3线性无关,判断a1+2a2,2a2+3a3,a1+2a2+3a3的相关性

a1+2a2,2a2+3a3,a1+2a2+3a3线性无关.r[a1+2a2,2a2+3a3,a1+2a2+3a3]可以求出来,具体为第3列减第二列,然后以此类推,变为a1,a2,a3.

设n维向量组a1,a2,...,as的秩等于r,如果r

应该知道这个结论吧:如果b1,b2,...,bt都能够被向量组a1,a2,...,as线性表示,那么向量组b1,b2,...,bt的秩不大于a1,a2,...,as的秩.n维向量中可以找到秩为n的向量

设n维向量组a1,a2,...,as的秩等于r,如果任何n维向量都可用a1,a2,...as线性表

如果还不是很明白的话,建议查看一下极大无关组的相关概念帮助理解一下,望采纳……

设n维向量组a1,a2,...,as的秩等于r,如果r=s,则任何n维向量都可用a1,a2,...

如果是同一个空间的话,那么这n维向量肯定可以表示该空间的任何一个向量,因为它们是该空间的基底向量,但是如果研究空间不再是原来空间了,那就不行了.再问:是唯一不对

设a1,a2...as和b1,b2...bs是两个线性无关的n维向量组,并且每个a1和b1都正交,证明a1...as,b

设k1a1+..ksas+m1b1+..+msbs=0,分别左乘m1b1^T,m2b2^T,.,msbs^T,再相加得(m1b1+...+msbs)^T*(m1b1+...+msbs)=0,故m1b1

线性代数问题:设向量组a1,a2,.,as线性无关,向量b1可由它线性表示,而向量b2不能由它线性表示,证明

假设线性相关,那么存在不全为0的c1、c2、……cs、d使得:c1a1+c2a2+.……+csas+d(b1+b2)=0显然d不等于0,因为等于0,那么a.就线性相关了.那么b2=(-c1a1-c2a

设n维向量a1,a2.aS的秩为r

选BB包含了A,C秩是向量组里极大线性无关组个数Dr个也行

证明向量组线性相关设向量组.,a1,a2,a3 ,线性相关,并设b1=a1+a2,b2=a1-2a2,b3=a1+a2+

方法一:b1-b2+b3=0,所以向量组B线性相关方法二:矩阵B=(b1,b2,b3)=(a1,a2,a3)C=AC,其中C=121-314-101|C|=0,所以秩(B)≤秩(C)<3,所以向量组B

设向量组a1,a2,.as的秩为r(r

结论是错的,反例:α1=(1.0),α2=(0,1),α3=(2,0)s=3,r=2.{α1,α3}就不是该向量组的极大无关组.