设向量as能由向量组a1,a2,...as-1线性表示

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:50:28
设向量as能由向量组a1,a2,...as-1线性表示
设向量组a1,a2,a3线性相关,向量组a2,a3,a4线性无关,证明a1能由a2,a3线性表示

说明向量组a1,a2,a3,a4线性相关;即存在不全为0的4个数k1,k2,k3,k4使得k1*a1+k2*a2+k3*a3+k4*a4=0(注由于这里不好写下标,在此声明k1,k2,k3,k4为系数

线代题:向量b可由向量组a1,a2…as线性表示且表示法唯一,证a1,a2…as线性无关

因为b可由向量a1,a2,...,as线性表示,且表示法唯一.所以方程组(a1,a2,...,as)x=b有唯一解所以r(a1,a2,...,as)=r(a1,a2,...,as,b)=s所以a1,a

若向量b能由a1,a2,a3这三个向量线性表示且表达式唯一,证明:向量组a1,a2,a3线性无关

证明:设k1a1+k2a2+k3a3=b若b=0由0向量的唯一表示,证明a1,a2,a3线性无关若b不等于0向量,则k1,k2,k3至少一个不为0向量,不妨设为k3,若a1,a2,a3线性相关,设存在

设向量组B:b1,b2,b3,...,br能由向量组A:a1,a1,...,as线性表示为 ( b1,b2,...,br

向量组B线性无关(b1,b2,...,br)X=0只有零解(a1,a2,...,as)KX=0只有零解--因为向量组A线性无关--所以KX=0只有零解r(K)=r(K的列数).再问:貌似简略了点儿,能

设向量组a1,a2,a3线性相关,向量组a2,a3,a4线性无关,证明(1):a1能由a2,a3线性表示 (2):a4不

(1)向量组a2,a3,a4线性无关,说明a2,a3,也线性无关;又因为向量组a1,a2,a3线性相关,所以a1能由a2,a3线性表示(2)假如a4能由a1,a2,a3线性表示,则由于a1能由a2,a

设向量组a1,a2,a3线性相关,而向量组a2,a3,a4线性无关.证明:(1)a1能由a2,a3表示;(2)a4不能由

(1)因为a2,a3,a4线性无关所以a2,a3线性无关又因为a1,a2,a3线性相关所以a1可由a2,a3线性表示(2)假如a4可由a1,a2,a3线性表示.由(1)知a4可由a2,a3线性表示这与

向量组证明题 设向量组(1)a1,a2,.as,能由向量组(2)b1,b2,.bt线性表示为(a1,a2,.as)=(b

必要性:假设R(A)<s,则线性方程组Ax=0有非零解,设x=(x1,……,xs)’是一个非零的s元列(其中x1,……,xs为纯量)满足Ax=0,则(a1,……,as)x=(b1,……,bt)Ax=0

向量相关性证明题设向量组 a1,a2,a3向量相关,向量组a2,a3,a4线性无关,证明:(1)a1能由a2,a3线性表

证明:(1)因为向量组a2,a3,a4线性无关,所以a2,a3线性无关(整体无关则部分无关)而a1,a2,a3向量相关故a1能由a2,a3线性表示.(2)若a4能由a1,a2,a3线性表示,则a4能由

设a1,a2,...as是n维向量组,如果s>n,则向量组 a1,a2,...as是线性?

n维向量组的秩至多为n,向量组a1,a2,...as是线性相关的.

设向量组a1,a2,a3……as线性无关(s>2),试证明下面向量组向量无关:a1,a1+a2,a1+a2+a3,……a

设k1a1+k2(a1+a2)+k3(a1+a2+a3)+...+ks(a1+a2+...+as)=0则(k1+k2+...+ks)a1+(k2+k3+...+ks)a2+...+ksas=0由已知a

一道线性代数题设向量组 B:b1,b2,...,br 能由向量组 A:a1,a2,...,an 线性表示为(b1,b2,

题目中K应该是nXr矩阵.首先,r(b1,b2,...,br)=r[(a1,a2,...,an)K]再问:r(AB)

设向量组a1、a2、a3线性无关,向量b1能由向量组a1、a2、 a3线性表示,而向...

(1)向量组a1、a2、a3、kb1+b2线性无关假如向量组a1、a2、a3、kb1+b2线性相关,则kb1+b2可由a1,a2,a3线性表示因为b1可由a1,a2,a3线性表示所以b2可由a1,a2

线性代数,如果向量组a1,a2...as可以由向量组b1,b2,...bt表示

由题意,设ai=c1i×b1+c2i×b2+...+cti×bt,i=1,2,...,s.记矩阵A=(a1,a2,...,as),B=(b1,b2,...,bt),C是s×t矩阵(cij),则A=BC

设n维向量组a1,a2,...,as的秩等于r,如果r

应该知道这个结论吧:如果b1,b2,...,bt都能够被向量组a1,a2,...,as线性表示,那么向量组b1,b2,...,bt的秩不大于a1,a2,...,as的秩.n维向量中可以找到秩为n的向量

设n维向量组a1,a2,...,as的秩等于r,如果任何n维向量都可用a1,a2,...as线性表

如果还不是很明白的话,建议查看一下极大无关组的相关概念帮助理解一下,望采纳……

线性代数问题:设向量组a1,a2,.,as线性无关,向量b1可由它线性表示,而向量b2不能由它线性表示,证明

假设线性相关,那么存在不全为0的c1、c2、……cs、d使得:c1a1+c2a2+.……+csas+d(b1+b2)=0显然d不等于0,因为等于0,那么a.就线性相关了.那么b2=(-c1a1-c2a

线性代数证明题:设向量组a1、a2,.,a(m-1) (m大于等于3)线性相关,向量组a2,.,am线性无关,求am能由

因为a2,.,am线性无关所以a2,.,am-1线性无关而a1,a2,.,am-1线性相关所以a1可由a2,.,am-1线性表示再问:额,问的是求am能由a2,…,am-1线性表示,求老师解答再答:a

设向量组a1,a2,.as的秩为r(r

结论是错的,反例:α1=(1.0),α2=(0,1),α3=(2,0)s=3,r=2.{α1,α3}就不是该向量组的极大无关组.