设向量as能由向量组a1,a2,...as-1线性表示
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:50:28
说明向量组a1,a2,a3,a4线性相关;即存在不全为0的4个数k1,k2,k3,k4使得k1*a1+k2*a2+k3*a3+k4*a4=0(注由于这里不好写下标,在此声明k1,k2,k3,k4为系数
因为b可由向量a1,a2,...,as线性表示,且表示法唯一.所以方程组(a1,a2,...,as)x=b有唯一解所以r(a1,a2,...,as)=r(a1,a2,...,as,b)=s所以a1,a
证明:设k1a1+k2a2+k3a3=b若b=0由0向量的唯一表示,证明a1,a2,a3线性无关若b不等于0向量,则k1,k2,k3至少一个不为0向量,不妨设为k3,若a1,a2,a3线性相关,设存在
向量组B线性无关(b1,b2,...,br)X=0只有零解(a1,a2,...,as)KX=0只有零解--因为向量组A线性无关--所以KX=0只有零解r(K)=r(K的列数).再问:貌似简略了点儿,能
(1)向量组a2,a3,a4线性无关,说明a2,a3,也线性无关;又因为向量组a1,a2,a3线性相关,所以a1能由a2,a3线性表示(2)假如a4能由a1,a2,a3线性表示,则由于a1能由a2,a
(1)因为a2,a3,a4线性无关所以a2,a3线性无关又因为a1,a2,a3线性相关所以a1可由a2,a3线性表示(2)假如a4可由a1,a2,a3线性表示.由(1)知a4可由a2,a3线性表示这与
必要性:假设R(A)<s,则线性方程组Ax=0有非零解,设x=(x1,……,xs)’是一个非零的s元列(其中x1,……,xs为纯量)满足Ax=0,则(a1,……,as)x=(b1,……,bt)Ax=0
证明:(1)因为向量组a2,a3,a4线性无关,所以a2,a3线性无关(整体无关则部分无关)而a1,a2,a3向量相关故a1能由a2,a3线性表示.(2)若a4能由a1,a2,a3线性表示,则a4能由
n维向量组的秩至多为n,向量组a1,a2,...as是线性相关的.
a1,a2...,as,as+1(s
设k1a1+k2(a1+a2)+k3(a1+a2+a3)+...+ks(a1+a2+...+as)=0则(k1+k2+...+ks)a1+(k2+k3+...+ks)a2+...+ksas=0由已知a
题目中K应该是nXr矩阵.首先,r(b1,b2,...,br)=r[(a1,a2,...,an)K]再问:r(AB)
(1)向量组a1、a2、a3、kb1+b2线性无关假如向量组a1、a2、a3、kb1+b2线性相关,则kb1+b2可由a1,a2,a3线性表示因为b1可由a1,a2,a3线性表示所以b2可由a1,a2
由题意,设ai=c1i×b1+c2i×b2+...+cti×bt,i=1,2,...,s.记矩阵A=(a1,a2,...,as),B=(b1,b2,...,bt),C是s×t矩阵(cij),则A=BC
应该知道这个结论吧:如果b1,b2,...,bt都能够被向量组a1,a2,...,as线性表示,那么向量组b1,b2,...,bt的秩不大于a1,a2,...,as的秩.n维向量中可以找到秩为n的向量
如果还不是很明白的话,建议查看一下极大无关组的相关概念帮助理解一下,望采纳……
1.错2.错3.D4.CD5.x-y6.0
假设线性相关,那么存在不全为0的c1、c2、……cs、d使得:c1a1+c2a2+.……+csas+d(b1+b2)=0显然d不等于0,因为等于0,那么a.就线性相关了.那么b2=(-c1a1-c2a
因为a2,.,am线性无关所以a2,.,am-1线性无关而a1,a2,.,am-1线性相关所以a1可由a2,.,am-1线性表示再问:额,问的是求am能由a2,…,am-1线性表示,求老师解答再答:a
结论是错的,反例:α1=(1.0),α2=(0,1),α3=(2,0)s=3,r=2.{α1,α3}就不是该向量组的极大无关组.