设双曲线的两个焦点为f1.f2过f2作双曲线实轴所在直线的垂线交双曲线于点p
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:17:52
(1)点P在双曲线上,且满足角F1PF2=90°F1F2为双曲线X²/4-y²=1的两个焦点,a=2.c=√5|PF1|-|PF2|=2a(|PF1|-|PF2|)^2=(2a)^
1、a²=4,b²=1c²=a²+b²=5令PF1=m,PF2=n则|m-n|=2a=4平方m²-2mn+n²=16F1F2=2c
楼上的答案应该是最直接的方法.我只能提供一下那个焦点三角形公式的证明方法,以便有个全面的了解.设PF1=mPF2=n余弦定理可得cosθ=(m^2+n^2-4c^2)/2mn=〔(m-n)^2+2mn
设F1,F2为双曲线x^2/4-y^2=1的两个焦点,点P在双曲线上,且满足向量PF1*向量PF2=0则三角形F1PF2面积是a=2,b=1,则c^2=a^2+b^2=5,F1F2=2c根据定义:|P
a=4,b=3,c=5.由|AF1|=8.5可知,点A在左支上,再由双曲线定义可知|AF2|-|AF1|=2a=8.∴|AF2|=16.5.易知,0<a<2.且4-a²=a²+2.
设|PF1|=3x,|PF2|=2x,则3x-2x=2a=2,解得x=2.∴△PF1F2的三边长分别为6,4,213.∵62+42=(213)2,∴∠F1PF2=90°.∴△PF1F2的面积=12×6
x²/4-y²=-1y^2-x^2/4=1a=1b=2c=√5所以焦点坐标是F1(0,-√5),F2(0,√5)设点P坐标是(x,y)则Kpf1=(y+√5)/xKpf2=(y-√
我也是刚刚做了这个题~应该可以看懂
由题易知,实轴长2a=4,焦距2c=2(根号5).设PF1=r1,PF2=r2,三角形面积为S,则依双曲线定义、余弦定理、面积公式,可列方程{|r1-r2|=2a,r1^2+r2^2-2r1r2cos
根据题意,焦距|F1F2|=2√5实轴2a=4根据双曲线定义,|PF1-PF2|=2a=4且因为∠F1PF2=90°,所以|PF1|²+|PF2|²=|F1F2|²=20
这是一道很常规的题,详细过程见图:
由题意得:2c:2b=2:√3∴b=√3c/2∴b²=3c²/4∴e²=c²/a²=c²/(c²-b²)=c²
(1)c/a=2又b^2=3,c^2=a^2+b^2解之得a^2=1,b^2=3,c=2,双曲线的方程为y²-x²/3=1所以双曲线的两条渐近线为y±x/√3=0(2)|AB|=5
因为F1F2为2C,所以PF2为C,由于角PF2F1为90度,所以PF1为根号5C,因为A=(根号5C-C)/2所以离心率为A/C=(根号5-1)/2
用a、b、c分别表示F1B1和B2A2方程,求出T的坐标,再得到M(ac/(c-a),b(a+c)/[2(a-c)])代入双曲线x²/a²-y²/b²=1中,就
易知F1(-√5,0),F2(√5,0)则|F1F2|=2√5显然满足条件的点P会有4个根据对称性令点P(xp,yp),其中xp>0,yp>0因S(△F1PF2)=1/2*|F1F2|*|yp|=2则
x^2-y^2/24=1,则双曲线a=1,c=5|F1F2|=10,定义,||PF1|-|PF2||=2a=2又|PF1|+|PF2|=14故|PF1|=8,|PF2|=6或|PF1|=6,|PF2|
a^2+b^2=c^2且e^2=c^2/a^2=(a^2+b^2)/a^2=1+3/a^2=4解得a^2=1
因为是正三角型所以|F1P|=|F1F2|则二者平方后也等即[0-(-c)]^2+(2b-0)^2=(-c-c)^2+0^2得到c^2+4b^2=4c^2所以4(c^2-a^2)=3c^2c^2=4a