设区域D由y=x,y=2x,y=1围成
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 23:11:55
二维随机是服从均匀分布的,所以根据公式知道:f(x,y)=1/8(D区域面积的倒数)所以X的边缘分布为:∫(0,x)1/8dy=x/80
均匀分布因此设f(x,y)=k.二重积分上下限分别(0,y)dx和(0,2)dy得2k=1,k=0.5因此f(x,y)=0.5,f(x)=积分0.5,上下限分别(0,x)dy=0.5x因此F(X)=0
积分区域是圆S=πf(x,y)=1/π,-√(2y-y²)再问:没问题了
面积=∫(-1~1)(1-x²)dx=x-x³/3|(-1~1)=2-2/3=4/3故概率密度f(x,y)=3/4(0
两个截距分别带入x=0得到y轴截距2y=0x1所以定义域三角形面积为1f(x,y)=1在上述给定区域fX(x)=∫(0~2-2x)1dy=2-2x0
f(x,y)=1/2,x>0,y>0,x+y
随机变量(X,Y)在区域D服从均匀分布,则联合密度函数P(X,Y)=1/Ω,Ω=1/2即区域D的面积,为直线x=0,y=x,y=1所围的部分,所以P(X,Y)=2
先画图,求曲线交点是(1,1),旋转完后,你想象一下做许多垂直于y轴的平行平面去截旋转体,得到的每个平面面积都是可求的,其实就是求平行截面为已知图形的物体体积.作x轴平行线y=y0交原平面图行于两点,
先写出(X,Y)的联合概率密度p(x,y)=1/4(x,y)∈G0其他则P(X与Y至少有一个小于1)=1-P(X≥1,Y≥1)=1-∫∫[x>1,y>1]p(x,y)dxdy=1-∫∫[1≤x再问:那
可以计算出D的面积为1/2所以(X,Y)的密度函数为f(x,y)=2(x,y)∈D而P(X+Y=y.0
设(X,Y)的联合密度函数f(x,y)=a(x,y)∈D首先有概率完备性知1=∫∫f(x,y)dxdy=∫∫adxdy=a∫(0,1)dx∫(x^2,x)dy=a/6所以a=6.(X,Y)的联合密度函
在这里D={(x,y)|0
y=x,x+y=1,x=0所形成的交点为((1/2,1/2),(1,0)∫∫dxdy=∫[0,1/2]dy∫[y,1-y]dx=∫[0,1/2](1-2y)dy=(y-y^2)[0,1/2]=1/4
∫∫(D)cosy²dxdy=∫(0,2)cosy²dy∫(1,y+1)dx(∫(a,b)表示从a到b积分)=∫(0,2)cosy²*[(y+1)-1]dy=∫(0,2)
=∫(2,0)∫(2x,x)x^2+3y^2dydx=∫(2,0)8x^3dx=32
选择A再问:额。有步骤嘛。。
先积y,∫∫(2x-y)dxdy=∫[0→1]dx∫[3-x→2x+3](2x-y)dy=∫[0→1][2xy-(1/2)y²]|[3-x→2x+3]dx=∫[0→1][2x(2x+3)-(
区域D的面积为:SD=∫e20dx∫1x0dy=∫e211xdx=lnx|e21=2,所以(X,Y)的联合概率密度为:f(x,y)=12 (x,y)∈D0