设区域D是单位圆x² y²≤1则二重积分∫∫xydxdy的极坐标形式为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:45:41
设区域D是单位圆x² y²≤1则二重积分∫∫xydxdy的极坐标形式为
设区域D是x^2+y^2≤1与x^2+y^2≤2x的公共部分,试写出∫∫f(x,y)dxdy在区域D,极坐标下先对r积分

x^2+y^2≤1与x^2+y^2≤2x有两个交点.分别从原点引线至两个交点,将公共部分分为三个区域,分别是(-π/2,-π/3),(-π/3,π/3),(π/3,π/2),这就是三个角的取值范围,用

设随机变量(X,Y)服从区域D={(x,y)|x^2+y^2

积分区域是圆S=πf(x,y)=1/π,-√(2y-y²)再问:没问题了

D是平面区域D={(x,y)|1

∫)0到4∫(x^2+y^2)再根号)0到4dxdy减去∫)0到1∫(x^2+y^2)再根号)0到1dxdy就行了

设两随机变量(X,Y)在区域D上均匀分布,其中D={(x,y):|x|+|y|≤1}.又设U=X+Y,V=X-Y,试求:

积分变量就是1/2,还非要积出来吗,如果非求结果那你就在Y=u-X和Y=-1-X之间定积分区间,(以第一个为例)有点麻烦用几何意义多简单,你那样太麻烦了刚才把u弄错了,我直接当成是上半部分了,不好意思

设(X,Y)服从下列区域D上的均匀分布,其中D:x>=y,0

可以计算出D的面积为1/2所以(X,Y)的密度函数为f(x,y)=2(x,y)∈D而P(X+Y=y.0

设D是不等式组 x+2y≦10,2x+y≥3,0≦x4,y≥1,表示的平面区域,则D中的点MF1到直

直线2x+y=3与y=1的交点A(1,1)到直线的距离最大.最大距离=|1+1-10|/(根号2)=4根号2

求联合概率密度设区域D是直线y=x,x=1及x轴所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)的联合

求出区域面积s=1/2...然后用1去除得:f(x,y)=2(当(x,y)属于D),f(x,y)=0(当(x,y)不属于D).

设D是由y=x,x+y=1及x=0所围成的区域,求二重积分 ∫∫dxdy

y=x,x+y=1,x=0所形成的交点为((1/2,1/2),(1,0)∫∫dxdy=∫[0,1/2]dy∫[y,1-y]dx=∫[0,1/2](1-2y)dy=(y-y^2)[0,1/2]=1/4

设区域D={(x,y)|x²+y²≤1,x≥0},计算二重积分I=∫∫(1+xy)/(1+x

原式=∫(-π/2,π/2)dθ∫(0,1)[(1+r²sinθcosθ)/(1+r²)]rdr(极坐标变换)=1/2∫(-π/2,π/2)dθ∫(0,1)[(1+rsinθcos

设v(x,y)在区域D内为u(x,y)的共轭调和函数,则下列函数中为D内解析函数的是

v(x,y)+iu(x,y)是解析函数的条件是v(x,y)在区域D内为u(x,y)的共轭调和函数

设D是由直线x=1 y=2 y=x-1 所围成区域 求∫∫cosy^2dxdy

∫∫(D)cosy²dxdy=∫(0,2)cosy²dy∫(1,y+1)dx(∫(a,b)表示从a到b积分)=∫(0,2)cosy²*[(y+1)-1]dy=∫(0,2)

设随机变量(X,Y)服从区域D上的均匀分布,其中区域D是直线y=x,x=1和x轴所围成的三角形区域,则(X,Y)的概率密

求出面积0.5概率密度f(x,y)=2当(X,Y)∈D时,其他=0再问:面积是0.5,怎么得到的概率密度是2呢?再答:均匀分布,密度是面积的倒数

设平面区域D由曲线y=1x

区域D的面积为:SD=∫e20dx∫1x0dy=∫e211xdx=lnx|e21=2,所以(X,Y)的联合概率密度为:f(x,y)=12  (x,y)∈D0