设函数y=1-xe的y,求dy
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 05:45:37
Q1:按照正常移向即可,将y'移到一边并合同.y'-xe^y*y'=e^yy'(1-xe^y)=e^yy'=e^y/(1-xe^y)Q2:(1)切线方程在(0,1)的切线方程的斜率正好为y'的值.将(
两边对x求导dy/dx=0+d(xe^y)/dxdy/dx=e^y*dx/dx+x*e^ydy/dxdy/dx=e^y+x*e^ydy/dxdy/dx-x*e^ydy/dx=e^ydy/dx=e^y/
dy=d(xe^y)=xde^y+e^ydx=xe^ydy+e^ydx(1-xe^y)dy=e^ydx所以dy/dx=e^y/(1-xe^y)
这类带指数的隐函数,求导方法是两侧同时取对数ln则对于这道题有:1-y=xe^yln(1-y)=ln(xe^y)=lnx+lne^y=lnx+y两侧同时对x求导:-y"/(1-y)=1/x+y"化简:
y=1+xe^y两边对x求导得y'=e^y+xe^y*y'(是对x求导那么e^y就是一个复合函数了所以最后要在对y求导)(1-xe^y)y'=e^y∴y'=e^y/(1-xe^y)再问:还不是很明白这
你让我情何以堪,微积分没学会遇到偏导数和隐函数的题?对方程两边取对数,化简后成了lnx+f(y)=y然后求导(这里其实用了偏导和隐函数求导.)y‘=1/x+f’(y)再问:隐函数刚学就有这题了,谢了能
y-xe^y=1y'-[x'e^y+x(e^y)']=0y'-[e^y+xy'e^y]=0(1-xe^y)y'=e^yy'=e^y/(1-xe^y)
隐函数求导问题把有y看成x函数两端求导y'+e^y+xe^y*y'=0解出y'=-(e^y)/(1+x*e^y)OK?
x=y*e^(-y)故dx/dy=e^(-y)+y*(-e^(-y))=(1-y)*e^(-y)故dy/dx=e^y/(1-y)再问:是吧dy/dx看成分数的是吧?
dy=[1/(x³+1)]*d(x³+1)=3x^2dx/(x³+1)再问:^是什么意思再答:x^n就是表示X的n次方
这是隐函数求导,y=xe^y,两边分别对x求导dy/dx=e^y+xe^y(dy/dx)dy/dx=e^y/(1-xe^y)在对上式求导d^2(y)/dx^2=[(dy/dx)e^y(1-xe^y-e
两边同时求导,y'=e^y+xe^y.y',y'=e^y/(1-xe^y),所以我挺你,是答案错了再问:不对,我刚刚发现把原题x用y表示出来再代进去就可以得到答案了,你能告诉我为什么要这样做吗?再答:
dy=d[cos2x/(x-1)]=y'dx={[-2sin2x*(x-1)-cos2x]/(x-1)^2}dx=-[2sin2x*(x-1)+cos2x]/(x-1)^2dx
y=(x-1)e^x+C
本题将方程的两边对x求导数左右为dy/dx右边为0+e^y+x*e^y*dy/dx提取dy/dx得:dy/dx=e^y/(1-xe^y)整理得:dy/dx=e^y/(2-y)由此,可以确定x和y的函数
y'=(x)'e^y+x(e^y)'y'=e^y+xe^y*y'再问:x(e^y)'=xe^y*y'?再答:对,因为y是x的函数,根据复合函数求导法,可得
y'=-(e^y+xy'e^y)-y'=e^y+xy'e^yxy'e^y+y'=-e^y(xe^y+1)y'=-e^yy'=-e^y/(xe^y+1)y'=-e^y/(xe^y+1)
dy+d(x*e^y)=d(1)dy+xd(e^y)+e^ydx=0dy+xe^ydy+e^ydx=0(xe^y+1)dy=-e^ydxdy/dx=-e^y/(xe^y+1)
dy/dx=xe^ye^(-y)dy=xdx两边分别积分,-e(-y)=1/2*x^2+Ce(-y)=-1/2*x^2+C-y=ln(C-1/2*x^2)y=-ln(C-1/2*x^2)再问:帮我写过