设函数y等于y(x)由方程e的y次方 xy=e所确定,求x=0出的切线方程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 04:11:12
设函数y等于y(x)由方程e的y次方 xy=e所确定,求x=0出的切线方程
设y=y(x)是由方程xy+e^y=y+1所确定的隐函数,求d^2y/dx^2 x=0

xy+e^y=y+1(1)求d^2y/dx^2在x=0处的值:(1)两边分别对x求导:y+xy'+e^yy'=y'y/y'+x+e^y=1(2)(2)两边对x再求导一次:(y'y'-yy'')/y'^

设y=y(x)是由方程e^y+xy=e所确定的隐函数,求y''(0) 求二导

如图所示,最后求解是自上而下带入的

设y=y(x)是由方程e的y次方-xy=e所确定的隐函数,则导数dx分之dy=?

e^y-xy=ee^y·dy/dx-(y+x·dy/dx)=0e^y·dy/dx-y-x·dy/dx=0(e^y-x)·dy/dx=ydy/dx=y/(e^y-x)dy/dx不能叫做dx分之dy,因为

设y=y(x)是由方程e^y+xy=e确定的隐函数,求dy/dx |x=0.烦请给出解题过程,

e^y+xy=e两边求导e^y*y'+y+xy'=0∴y'(e^y+x)=-yy'=-y/(e^y+x)即dy/dx=-y/(e^y+x)当x=0时,e^y=e,y=1∴dy/dx|(x=0)=-1/

设y=y(x)是由方程x*y^3+(e^x)*siny=ln(x)确定的函数,求dy/dx.

不就是对x求导吗?把y看成中间变量y=y(x)说明要想导x要通过y这个中间变量两边对x求导:y^3+(3x*y^2)*dy/dx+(e^x)*siny+(e^x)*cosy*dy/dx=1/x下面你自

高数导数问题 设y=f(x)由方程xy=e^(x+y)确定,则y``(y的二阶导)等于多少

直接两边对X求导,注意Y是X的函数.所以得:y+xy'=e^(x+y)*(1+y'),化简,代入原方程得:y+xy'=xy(1+y'),然后对得到的式子在此求导,得:y'+y'+xy''=(y+xy'

设函数y=f(x)由方程e∧y+sin(x+y)=1决定,求二阶导数

两边对x求导:y'e^y+(1+y')cos(x+y)=0,1)这里可得到y'=-cos(x+y)/[e^y+cos(x+y)]再对1)求导:y"e^y+(y')^2e^y+y"cos(x+y)-(1

设由方程e^z-xyz=0确定了函数y=y(x),则偏z偏x等于

e^z-xyz=0z=㏑x+㏑y+㏑z[偏z偏x]=1/x+(1/z)[偏z偏x](这里y看成常数)[偏z偏x]=(1/x)/{1-(1/z)}=z/[x(z-1)]

,.设y=y(x)是由方程e^x-e^y=xy所确定的隐函数 求y'(0)另一题设y=y(x)由参数方程x=cos t和

网上有很多高数课后习题答案,你可以下载一个参考~e^y-e^x=xy两边求导,得e^y*y'-e^x=y+xy'(e^y-x)y'=(e^x+y)所以y'=(e^x+y)/(e^y-x)x=0时,原式

设函数y=y(x)由方程y+e^(x+y)=2x确定,求dx/dy

分别对y求导,求左边为1+【e^(x+y)×(dx/dy+1)】右边为2×dx/dy推的dx/dy:自己算下,没得草稿纸.

设函数y=y(x)由方程xy+e^y=1所确定,求y"(0)

xy+e^y=1e^y(0)=1y(0)=0xy'+y+e^yy'=00+y(0)+y'(0)=0y'(0)=0xy''+y'+y'+e^yy''+(y')^2e^y=00+2y'(0)+y''(0)

设y=y(x)是由方程e*x-e*y=xy所确定的隐函数 求dy

两端对x求导得e^x+e^y*y'=y+xy'y'=(e^x-y)/(x-e^y)dy=(e^x-y)/(x-e^y)dx

设由方程e的x次方加e的y次方加x乘以y等于1确定函数y=f(x),求y的导数

此题要用到隐函数求导法则,方法如下:对方程的左右两边同时对x求导,要注意,y是关于x的函数,所以关于y的函数求导就要用到复合函数的求导法则,比如:e^y的导数正确结果就是:y的导数*e^y.这样就可以

设y等于Y括号X是由方程e的x方减e的y方等于sin括号xy所确定的隐函数,求微分dy

e^x-e^y=sin(xy)e^x-e^y*y'=cos(xy)*(y+xy')y'=(e^x-ycos(xy))/(e^y+xcos(xy))dy=(e^x-ycos(xy))/(e^y+xcos

设y(x)由方程e^y-e^x=xy 所确定的隐函数 求y' y'(0)

e^y-e^x=xy两边求导,得e^y*y'-e^x=y+xy'(e^y-x)y'=(e^x+y)所以y'=(e^x+y)/(e^y-x)x=0时,e^y-e^0=0,则e^y=1,则y=0所以y'(

设函数y=y(x)由方程e^y+xy=e所确定,求y’(0)

两边对x求导数,得y'*e^y+y+xy'=0,在原方程中令x=0可得y=1,因此,将x=0,y=1代入上式可得y'+1=0,即y'(0)=-1.再问:对x求导时y可以当成一个常数吗?为什么要用公式(

设函数y=y(x)由方程e^y+xy+e^x=0确定,求y''(0)

/>e^y+xy+e^x=0两边同时对x求导得:e^y·y'+y+xy'+e^x=0得y'=-(y+e^x)/(x+e^y)y''=-[(y'+e^x)(x+e^y)-(y+e^x)(1+e^y·y'

设函数y=y(x)由方程:e的xy次方+ln y/(x+1)=0确定,求y(0).

min是指f(x)g(x)h(x)三个函数中的最小值

设隐函数y=y(x)由方程x^y-e^y=sin(xy)所确定,求dy

化为:e^(ylnx)-e^y=sin(xy)两边对x求导:e^(ylnx)(y'lnx+y/x)-y'e^y=cos(xy)(y+xy')y'[lnxe^(ylnx)-e^y-xcos(xy)]=[