设函数y=f(x)二阶可导且f(2)=1 f

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:48:42
设函数y=f(x)二阶可导且f(2)=1 f
【高数】设函数f(x)在实轴上连续,f'(0)存在,且具有性质f(x+y)=f(x)f(y),试求出f(x)

f(0+0)=f(0)*f(0),f(0)=0or1因为f(x)连续,所以f(x+dx)-f(x)=f(x)f(dx)-f(x)=f(x)(f(dx)-1)f(x)(f(dx)-1)趋向于f(x)(f

设函数y=f(x)是定义在(0,正无穷)上的单调函数,且f(x/y)=f(x)-f(y)

(1)、f(1)=f(1/1)=f(1)-f(1)=0(2)、f(xy)=f[x/(1/y)]=f(x)-f(1/y)f(1/y)=f(1)-f(y)=-f(y)∴f(xy)=f(x)+f(y)(3)

高中数学题:设函数f(x)对任意x、y属于实数R都有f(x+y)=f(x)+f(y),且x

1.首先令x=0,y=0,有f(0)=f(0+0)=f(0)+f(0),解出f(0)=0然后令y=-x,有f(0)=f(x-x)=f(x)+f(-x)=0所以f(-x)=-f(x)所以函数是奇函数2.

设函数f(x)对任意实数x,y都有f(x+y)=f(x)+f(y),且x>0时,f(x)

f(0+1)=f(0)+f(1),所以f(0)=0;令x=-y,f(0)=f(x)+f(-x)=0,所以为奇函数假设X1.X2,且X1>X2.f(x1)=f(x1-x2+x2)=f(x1-x2)+f(

设函数f(x)对定义域内任意实数都有f(x)≠0,且f(x+y)=f(x)*f(y)成立

证明:由题设可知,f(t)=f[(t/2)+(t/2)]=f(t/2)*f(t/2)=[f(t/2)]^2.===>f(t)=[f(t/2)]^2.易知,f(t/2)≠0.===>[f(t/2)]^2

设函数f(x)对定义域内任意实数都有f(x)不等于0,且f(x+y)=f(x)*f(y)成立拜托了各位

任意x=x/2+x/2所以f(x)=f(x/2+x/2)=f(x/2)*f(x/2)=f(x/2)的平方因为f(x/2)不等于0所以f(x)>0

设函数f(x)对于任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时f(x)

令y=-x;由f(x+y)=f(x)+f(y)得:f(x-x=f(x)+f(-x)即:f(x)=-f(-x);f(x)为奇函数.令x1>x2>0,f(x1)-f(x2)=f(x1)+f(-

设函数y=f(x)满足f(x+2)=-f(x),且f(2)=2,求f(-2)、f(4)、f(100)的值

f(x+4)=-f(x+2)=f(x)f(x)的周期为4f(-2)=f(2)=2f(4)=-f(2)=-2f(100)=f(4)=-2.

设函数y=f(x)满足f(x+2)=-f(x),且f(2)=2,求f(-2),f(4),f(100)的值

1.设X=0,则f(0+2)=-f(0)推出f(2)=-f(0)=2,f(0)=-2;2.设X=-2,则f(-2+2)=-f(-2)即f(0)=-f(-2)=-2,f(-2)=2;3.设X=2,则f(

设函数y=f(x)的定义域为(0,+∝)且f(xy)=f(x)+f(y),f(8)=3则f(根号2)等于

f(xy)=f(x)+f(y),所以f(2*2)=f(2)+f(2)即f(4)=2f(2)f(2)=f(√2)+f(√2)=2f(√2)f(8)=f(2)+f(4)=3f(2)=3*2f(√2)=6f

设函数f(x)可导,且y=f(x2),则 dy/dx=?

函数f(x)可导,设其导函数为g(x)dy/dx=df(x^2)/dx=g(x^2)*dx^2/dx=2x*g(x^2)

设函数f(x)的定义域为R,且f(x+y)=f(x)-f(y).判断并证明f(x)的奇偶性

令x=y=0,则f(0)=f(0)-f(0)∴f(0)=0令y=﹣x,则f(0)=f(x)-f(﹣x)∴f(﹣x)=f(x)∴f(x)是奇函数

设函数f(x)对一切实数x,y满足f(xy)=xf(y)+yf(x)-xy且|f(x)-x|≤1,求函数f(x).

令g(x)=f(x)-xg(xy)+xy=x(g(y)+y)+y(g(x)+x)-xyg(xy)=xg(y)+yg(x)令x=0,g(0)=yg(0),g(0)=0若存在|a|>=1使得g(a)不等于

设z=f(x/y)且f为可微函数,则dz=

dz=f'x(x/y)dx+f'y(x/y)dy=[f'(x/y)/y]dx+f'(x/y)(-x/y²)dy

设函数f(x)定义域为R,且满足f(xy)=f(x)+f(y),则f(1/x)+f(x)=______

∵f(xy)=f(x)+f(y)∴令x=y=1时f(1)=f(1)+f(1)∴f(1)=0∴f(1/x)+f(x)=f(1/x*x)=f(1)=0.则f(1/x)+f(x)=__0____.

设函数y=f(x)二阶可导,f'(x)

画图可以知道选D再问:f(x)不是单减吗?再答:噢,那画错了选A

设函数y=f(x)是定义在(0,正无穷大)上的单调函数,且f(x/y)=f(x)-f(y)

单调性不用证明,题目已经给了,只需判断是增是减f(xy)=f(x)+f(y),f(4)=f(2)+f(2)=2所以f(2)3(1)f(x)-f(1/x-3)≤2f(x(x-3)≤f(4)x(x-3)≤

设函数发(x)对于任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时,f(x)

你题目抄错了,是f(1)=-2这道题是这么解的:1.令x=y=o,则有f(0)=f(0)+f(0)所以f(0)=02.令y=-x,则有:f(0)=f(x)+f(-x)=0所以:f(-x)=-f(x)得