设函数fx等于2x-cosx,an
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 10:12:04
(1)这样形式的题,一般都化成2x的三角函数,所以周期为πf(x)=2sinxcosx-2cosx^2+1=sin2x-cos2x=根号2/2sin(2x-π/4)(2)x∈[π/8,3π/4](2x
f(x_=(cosx+sinx)(cosx-sinx)=cos²x-sin²x=cos2x所以T=2π/2=πf(α/2)=cosα=1/3sin²α+cos²
设函数fx=sin(φ-2x)(0
f(x)=sin2x+2√3cosxcosx=sin2x+√3(1+cos2x)=sin2x+√3cos2x+√3=2sin(2x+π/3)+√3T=2π/2=π
0因为根号≥0这是定理
f(x)=cosx-cos(x+π/2)=cosx+sinx=3/4sin^2x+cos^2x+2sinxcosx=9/162sinxcosx=sin2x=9/16-1=-7/16
再答:����再答:л��再问:�Ǻǣ���Ӧ��л��
AX+COSX小于等于1+SINXCOSX-SINX小于等于1-AX根号2*COS(X+PAI/4)小于等于1-AX由Y=根号2*COS(X+PAI/4)和Y=1-AX的图像可直接判定,A小于等于0画
乘开得:2cosx的平方2倍根号3cosxsinx-1=cos2x根号3sin2x=2(1/2cos2x根号3/2sin2x)=2sin(2x派/6),T=派,单调递增区间:2k-/2小于等于2x/6
|2x-7|+1
(1)f(x)=√3sinx·cosx+cos²x+2m-1=1/2*(√3*2*sinx·cosx+2cos²x)+2m-1=1/2*(√3*sin2x+cos2x+1)+2m-
f'=e^x+xe^x,g'=2ax+1f'-g'=e^x-1+xe^x-2axx>等于0时.恒有fx>等于gxf'-g'>0,解得a>0
f(x)=x+1/x-1(x>=2)>=2-1=1x=1时去最小值但是x>=2所以f(x)单调递增f(x)min=f(2)=1.5值域:[1.5,+∞)再问:为什么x大于等于2时函数是增函数再答:画图
只需(4-k*2的x次方)>0,即4>k*2的x次方对k讨论,若k=0,则,定义域为R若k>0则变为,4/k>2的x次方两边取对数即为ln(4/k)>xln2即为(ln(4/k))/(ln2)>x若k
log2x(x>0)f(x)=log(1/2)(-x)(xf(-a)当a>0,则-alog(1/2)alog2a>-log2alog2a+log2a>02log2a>0a>1当a0log(1/2)(-
你的分析前一半是对的,一直到“那么2x的单调增区间是[-4分之π,4分之π]”.2x的单调递增区间是[-π/2,π/2],x的才是[-π/4,π/4].所以函数在x=-π/3处取得最小值为-2分之根号
令sinx+cosx=2sin(x+π/4)=t∵0≤x≤π/2,π/4≤x+π/4≤3π/4,∴-√2/2≤sin(x+π/4)≤1即-√2≤t≤2(sinx+cosx)^2=1+2sinxcosx
f'(x)=2x+a>0x>-a/2-a/2=-2a=4
解f'(x)=(x^2+xsinx+cosx)'=(x^2)'+(xsinx)'+(cosx)'=2x+x'sinx+x(sinx)'-sinx=2x+sinx+xcosx-sinx