设函数fx对于任意xy属于r都有f(x-y)=f(x)-f(y)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:09:59
1)当x=0时,f(x)=f(2x)=1f(x)+f(2x)==22)当x
令x=y=0f(0)=2f(0)f(0)=0令y=-xf(0)=f(x)+f(-x)=0f(x)=-f(-x)是奇函数f(2)=f(1)+f(1)=2f(2a)>f(a-1)+2=f(a-1)+f(2
∵x=y=0∈(-1,1)∴有f(0)+f(0)=f((0+0)/1+0*0)→2f(0)=f((0)→f((0)=0对任意x,(-1,1)→,y=-x属于(-1,1)都有f(x)+f(-x)=f((
对任意实数x,y都有f(x+y)=f(x)+f(y)令x=y=0,得f(0)=2f(0),f(0)=0,令y=-x,得0=f(x)+f(-x),∴f(x)是奇函数.设x10,x>0时f(x)
∵函数f(x)是定义在R上的奇函数且对任意x属于R都有f(x)=f(x+4)∴f(0)=f(4)=0f(x)=-f(-x)f(x)为周期为4的函数∴f(2012)=f(0)f(2011)=f(-1)∵
令x=1,y=1时f(1+1)=f(1)+f(1)=4解得f(1)=2令x=2,y=-1时f(2-1)=f(2)+f(-1)=2解得f(-1)=-2
DC=存在某个x0属于R使得f(x0)+f(-x0)=0只存在一个点不是奇函数.
令x1=x2=x/2f(x)=f^2(x/2)≥0,又因为f(x)不等于0,所以f(x)>0f(x1-x2)*f(x2)=f(x1-x2+x2)=f(x1)所以f(x1-x2)=f(x1)/f(x2)
1.令x=0得f(0)=f(0)f(0)f(0)=02.f(x)在R上的单调递增.证明:在R内任取x1,x2且x10f(x2-x1)>1f(x2)=f(x2-x1+x1)=f(x2-x1)f(x1)>
解题思路:第一题根据函数单调性的定义来证明,第二问先求值,再结合单调性来解不等式解题过程:
令y=0f(x)+f(0)=f(x)∴f(0)=0令y=-xf(x)+f(-x)=f(0)=0f(-x)=-f(x)定义域R所以是奇函数
这个要分类讨论,有四种情况,但要首先将该抛物线顶点坐标写出来,其实顶点坐标的x其实就是抛物线的对称轴,a大于0开口向上,然后然后让对称轴在-1的左边,并联立不等式组,然后让对称轴在1的右边,并联立不等
1)证明:令x=0;可得-f(y)=f(-y)所以为奇函数;2)证明:设x4所以-5x+1113/5
对于任意的x都有f(2-x)+f(x)=0恒成立即f(2-x)=-f(x)所以f(1-x)=-f(1+x)因此f(x)图像关于点(1,0)对称,因f(x)的定义域为R,所以f(1)=0fx是定义在R上
可以取到的,因为f(x+y)=fx+fy.取y=0,得到f(0)=0,再取y=-x,得到f(x)==-f(x),那么f(x)就是奇函数.函数图像关于原点对称,在(-6,+6)上必须有最大值和最小值.
f(x)-f(y)=f(x-y)令x=2,y=1得f(2)-f(1)=f(2-1)=f(1)所以f(2)=2f(1)=2×(-2)=-4当x<0时,f(x)>0又f(x)为奇函数所以当x>0,f(x)
1、设函数fx为奇函数且对任意xy属于R都有fx-fy=f(x-y)当x0f(1)=-5,求f(x)在[-2,2]上的最大值解析:∵函数f(x)为奇函数,其定义域为R,∴f(-x)=-f(x),f(0
令y=0,F(1)=f(x)*f(0)-f(0)-x+2=f(x)-x+1令y=1,x=0,F(1)=f(0)*f(1)-f(1)+2=2所以f(x)-x+1=2,f(x)=x+1F(xy+1)=(x
取a=b=0得f(0)=0,取a=x,b=-x得f(x)+f(-x)=0,故f(-x)=-f(x),所以是奇函数