设函数fx=ax^2-2x 2,对于满足

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:26:11
设函数fx=ax^2-2x 2,对于满足
设二次函数fx=ax^2+bx+c在区间[-2,2]上的最大值,最小值分别为M,m,集合A={fx=x}

(1)因为f(0)=2,所以c=2;又因A={f(x)=x}即集合内元素为方程f(x)=x即ax^2+(b-1)x+c=0的解此时集合内有1,2两各元素,故由伟达定理得-(b-1)/a=1+2=3;c

已知函数fx=2|x-2|+ax有最小值

分段讨论当x>=2时,f(x)=(2+a)x-4;当x0,a-2

已知函数fx=ex(x2+ax+1)求函数fx的极值

fx'=ex(2x+a)+ex(x2+ax+1)=ex(x2+(2+a)x+a+1)=ex(x+a+1)(x+1)令fx'=0得x1=-a-1,x2=-1ex>01)a=0fx是增函数无极值2)a>o

已知函数fx=ax^2+lnx

fx=-1/2x²+lnx,显然x>0f'x=-x+1/x=(1-x²)/x令f'x1所以,fx在(1,+无穷)上单调递减fx在(0,1)上单调递增在(1/e,e)上,f(x)ma

设函数Fx=ax^2+bx+1.(a.b∈R)

Fx=ax^2+bx+1F(-1)=a-b+1=0对于任意函数均有Fx≥0b^2-4a≤0a>0解得(a-1)^2≤0a=1b=2Fx=x^2+2x+1Gx=xFx-kx=x^3+2x^2+(1-k)

已知函数fx=x2-2ax+5(a大于1)若fx的定义域和值域均是[1,a]求实数a的值

楼主,对给点时间考虑一下哈.答案再2楼再问:嗯嗯谢谢再答:解函数fx经过配方后的fx=(x-a)^2+5-a^2,对称轴位a。因为a>1所以在定义域[1,a]中最小值出现在x=a的时候,fx=5-a^

一道导数数学题.设函数fx=ax-2-lnx

原式即证:e^x>lnx+2∵e^x>x+1(用导数证)x-1>lnx(用导数证)∴e^x>x+1=x-1+2>lnx+2结论得证(上面的大于号都带等但不同是取等)

已知函数fx=x2+ax+2,a属于R,若函数gx=fx+x2+1在区间(1,2)上有两个不同的零点

由于f(x)=x²+ax+2,并且g(x)=f(x)+x²+1,那么可以得到g(x)=2x²++ax+3,如果g(x)在区间(1,2)上有两个零点,那么有如图所示回答:

急 已知二次函数fx=x2+ax+b 且方程fx=14有两个根-2 4

x^2+ax+b-14=0的两个根为-2,4.所以-2+4=-b/a=-a,所以a=-2,-2*4=c/a=b-14b=6所以方程为f(x)=x^2-2x+6f(x)=x^2-2x+6在x∈R上有最小

设fx=1/2*ax^2-2ax+lnx ,已知函数fx有两个极值点x1x2

fx=1/2*ax^2-2ax+lnx有两个极值点x1x2,则fx'=ax-2a+1/x=0有x1x2两个零点.由函数定义域知x>0,所以,ax^2-2ax+1=0有x1x2两个零点.所以,(2a)^

设函数fx=xe^x,gx=ax^2+x,若x>等于0时.恒有fx>等于gx.求a的取值范围

f'=e^x+xe^x,g'=2ax+1f'-g'=e^x-1+xe^x-2axx>等于0时.恒有fx>等于gxf'-g'>0,解得a>0

已知二次函数fx=x2-2ax+a在区间[0,3]上的最小值-2,求a值

函数的对称轴为x=a,讨论a的范围(画出函数图像)(1)若a

设函数fx=x2-2ex+m-lnx/x,若函数fx至少存在一个零点,则实数m的取值范围

解析:∵F(X)=X^3-2eX^2+mX-lnX ,记G(X)=F(X)/X则g(X)=X^2-2eX+m-lnX/x令G ‘(X)=2X-2e+(lnX-1)/x^2=0==&

设函数fx=x^3+ax^2-a^2x+m其中实数a>0.

这是求什么啊,怎么连个问题也没有

设函数Fx=ax^2+bx+1.(a.b∈R) (1).若F(-1)=0.则对任意函数均有Fx≥0

再问:为什么X的两次会变到三次?再答:?哪儿再问:第二问哪里。GX哪里为什么会变到GX=X(ax2+bx+1)-kx再问:?再答:我将F(x)的函数式代入了呀再问:是啊,哪里是两次。带进去怎么就多了个

已知函数fx=ax^2+bx+1,Fx={fx,x>0 -(fx),x

首先:(1)f(-1)=a-b+1=0b=a+1从f(-1)=0,f(x)的值都是正的,可以得到抛物线一定是开口向上的,所以a>0.又:f(x)=ax^2+(a+1)x+1=a(x^2+[(a+1)/

设函数fx=x^3+ax^2-a^2x+m若a=1时函数fx有三个不同的零点

(1)对f(x)求导得:f(x)'=3x^2+2ax-a^2解得两个极值点分别为:x1=-a,x2=a/3当a=0时:x1=x2=0,故此时f(x)在R上都不存在极值点,满足条件.当a≠0时:考虑到x

设函数fx=ax^2+x-a,a属于R,1)

(1)(-4a^2-1)/(4a)=17/8-32a^2-8=68a8a^2+17a+2=0(a+2)(8a+1)=0a=-2ora=-1/8(2)ax^2+x-a>1ax^2+x-a-1>0(x-1

函数fx=x2-2lnx最小值

解由fx=x2-2lnx知x>0求导得f'(x)=2x-2/x=(2x^2-2)/x令f'(x)=0解得x=1或x=-1当x属于(0,1)时,f'(x)<0当x属于(1,正无穷大)时,f'(x)>0故