设函数fx=a x-x,a属于r

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 01:17:53
设函数fx=a x-x,a属于r
已知函数Fx=Ax+1+lNx/x,其中A属于R 若Fx在定义域上单调递增,求实数A的取值范围

定义域为x>0在定义域单调增,即f'(x)>=0恒成立f'(x)=a+(1-lnx)/x^2>=0a>=(lnx-1)/x^2=g(x)现求g(x)的最大值.由g'(x)=[x-2x(lnx-1)]/

fx=|x+1|+ax(a属于R),若函数fx在R上具有单调性,求a取值范围

当x大于-1时fx=x+1+ax;x小于0时fx=1-x+ax.因为fx在R上具有单调性,将a分类讨论得出a大于1或小于-1再问:答案正确,能详细的么?谢谢再答:当x大于-1时fx=(1+a)x+1,

已知函数fx=alnx-ax-3(a属于R)求函数fx的单调区间

f'(x)=a/x-a=(a-ax)/x=a(1-x)/x定义域是x>0当a>0时令f'(x)>=00

已知函数fx=ax+lnx ( a属于R)

(1)f'(x)=2+1/xf'(1)=3就是切线的斜率(2)f'(x)=a+1/x令a+1/x=0,x=-1/a当a>=0时,f'(x)>0,在x>0范围内单调递增,当a-1/a时函数递增0

已知函数fx=(ax+1)(x+1)e^x,a属于R,若函数

解题思路:导数的几何意义该点处的导数值就是斜率解题过程:,

已知函数fx=ax减x平方减lnx ,a属于R 当a等于零时 判断fx的单调性 急

当a=0的时候f(x)=-x^2-lnxf'(x)=-2x-1/x令f'(x)=0得到=-2x-1/x=0,无解显然在(-∞,0)f'(x)>0在(0,+∞)f'(x)

设a属于R,函数f(x)=ax^3-3x^2……

a=1先求导,把X=2代入导函数中令导函数等于零,得a=1再验证:将a=1代入原导函数中,求该函数的极值,得到2确为该函数的极值(极小值).所以a=1

已知函数f(x)=ax+lnx,a属于R,求fx单调区间

1.f'(x)=a+1/x=a(x+1/a)/x当a>0时,-1/a0,解得:0

已知函数fx=ax^2-1(a,x属于R),设集合A={x/fx=x},集合B={x/f[f(x)] =x},且A=B不

重点化简集合B.f[f(x)]=a(ax^2-1)^2-1=xa(ax^2-1)^2=x+1a(ax^2-1)^2-ax^2=x+1-ax^2a(ax^2-1+x)(ax^2-1-x)+(ax^2-x

设函数fx=x-a/2lnx,其中a属于R 求fx的单调增区间

对f(x)求导得f'(x)=1-a/(2x),要求f(x)的单调增区间,则求f'(x)>=0,则1-a/(2x)>=0.即a/(2x)0时,x>=a/2,当a

设函数f(x)=ax-(a+1)ln(x+1) a属于R

很简单(1)对于函数f(x)=ax-(a+1)ln(x+1)其一次导函数为f'(x)=(ax-1)/(x+1)二次导函数为f''(x)=(a+1)/(x+1)²易知当a>-1时,f'(x)单

已知函数fx=x的平方+ax-lnx(a属于R) 1,若函数fx在《1,2》上是减函数,求实数a的取值

希望对你有所帮助 再问:请问当a属于(0,e)是怎样证明e平方x的平方-2分之5x大于(x+1)lnx呢?再答:我刚才还以为你 就问2问呢 嘿嘿 加油~~若可以

设函数fx=ax^2+x-a,a属于R,1)

(1)(-4a^2-1)/(4a)=17/8-32a^2-8=68a8a^2+17a+2=0(a+2)(8a+1)=0a=-2ora=-1/8(2)ax^2+x-a>1ax^2+x-a-1>0(x-1

已知a属于R,求函数fx=x^2e^ax的单调区间

F(x)=x^2e^(ax)求导得:f’(x)=e^(ax)+ax²e^(ax)=e^(ax)(ax²+2x)e^(ax)恒大于0①a>0时,ax²+2x>0,解得x>0

已知a属于R,求函数fx=x^2e^ax的单调递增区间

求导数e^ax(ax2+2x)e^ax恒大于0,所以只要讨论ax2+2x即可x(ax+2)当a大于0时,递增区间就是x小于-2/a或者x大于0当a等于0时,x大于0递增当a小于0时,递增区间是x大于0

函数fx=x^2-alnx a属于R

答:f(x)=x^2-alnx,x>0;f'(x)=2x-a/x1)当a=0,f(x)是增函数.