设函数fx=2x-cosx,{an}是公差为π 8的等差数列
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:11:39
(1)这样形式的题,一般都化成2x的三角函数,所以周期为πf(x)=2sinxcosx-2cosx^2+1=sin2x-cos2x=根号2/2sin(2x-π/4)(2)x∈[π/8,3π/4](2x
f(x_=(cosx+sinx)(cosx-sinx)=cos²x-sin²x=cos2x所以T=2π/2=πf(α/2)=cosα=1/3sin²α+cos²
设函数fx=sin(φ-2x)(0
f(x)=sin2x+2√3cosxcosx=sin2x+√3(1+cos2x)=sin2x+√3cos2x+√3=2sin(2x+π/3)+√3T=2π/2=π
AX+COSX小于等于1+SINXCOSX-SINX小于等于1-AX根号2*COS(X+PAI/4)小于等于1-AX由Y=根号2*COS(X+PAI/4)和Y=1-AX的图像可直接判定,A小于等于0画
乘开得:2cosx的平方2倍根号3cosxsinx-1=cos2x根号3sin2x=2(1/2cos2x根号3/2sin2x)=2sin(2x派/6),T=派,单调递增区间:2k-/2小于等于2x/6
(1)向量a=(sinx/2,根号3cosx/2),b=(cosx/2,cosx/2).f(x)=a●b=sinx/2cosx/2+√3cos²x/2=1/2sinx+√3/2(1+cosx
f(x)=2(sinx+cosx).cosx=2sinxcosx+2(cosx)^2=sin2x+2(cosx)^2-1+1=sin2x+cos2x+1所以f(x)的最小正周期为π
(1)f(x)=sinx*(sinx+cosx)+cosx*2*cosx=3/2+(sinx+cosx)/2=3/2+(√2)*sin(2x+π/4)/2∴最小正周期:2π/2=π最大值:3/2+(√
(1)f(x)=√3sinx·cosx+cos²x+2m-1=1/2*(√3*2*sinx·cosx+2cos²x)+2m-1=1/2*(√3*sin2x+cos2x+1)+2m-
fx=4cos²x-2+1-cos²x-4cosx=3cos²x-4cosx-1令t=cosx则-1≤t≤1即求[3t²-4t-1]的最值
1.x>=2f(x)=x-2+x=2x-2x=2,fmin=2,f(x)>=22.x=2g(x)=2f(x)=2x-2/x+1/32.x
fx=x(e^x-1)-1/2x^2f'(x)=e^x-1+x*e^x-x=(1+x)e^x-(1+x)=(x+1)(e^x-1)x+1是增函数e^x-1是增函数令(x+1)(e^x-1)>=0∴x=
f(x)=2sin(x-π/6)cosx+2cos²x=(2sinxcosπ/6-2cosxsinπ/6)cosx+2cos²x=√3sinxcosx-cos²x+2co
f(x)=sinx-cosx=√2sin(x-4/π)(1).T=2π(2).f(x)max=√2f(x)min=-√2(3).sina+cosa=√2cos(a-π/4)cos(a-π/4)=√[1
log2x(x>0)f(x)=log(1/2)(-x)(xf(-a)当a>0,则-alog(1/2)alog2a>-log2alog2a+log2a>02log2a>0a>1当a0log(1/2)(-
你的分析前一半是对的,一直到“那么2x的单调增区间是[-4分之π,4分之π]”.2x的单调递增区间是[-π/2,π/2],x的才是[-π/4,π/4].所以函数在x=-π/3处取得最小值为-2分之根号
令sinx+cosx=2sin(x+π/4)=t∵0≤x≤π/2,π/4≤x+π/4≤3π/4,∴-√2/2≤sin(x+π/4)≤1即-√2≤t≤2(sinx+cosx)^2=1+2sinxcosx
解f'(x)=(x^2+xsinx+cosx)'=(x^2)'+(xsinx)'+(cosx)'=2x+x'sinx+x(sinx)'-sinx=2x+sinx+xcosx-sinx