设函数f(x)可导,且满足f(x)-∫f(t)dt=ex

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:19:30
设函数f(x)可导,且满足f(x)-∫f(t)dt=ex
设f(x)是定义在R上的可导函数,且满足f(x)+xf'(x)>0则不等式f(√(x+2))>√(x-2﹚f(√﹙x^2

考虑f(x)+xf'(x)构造函数F(x)=xf(x)则F'(x)=f(x)+xf'(x)>0所以F(x)=xf(x)是增函数不等式f(√(x+2))>√(x-2﹚f(√﹙x^2-4﹚﹚两边同时乘以√

设f(x)为可导函数且满足lim(f(a)-f(a-x))/(2x)=-1,x趋近0

[f(a)-f(a-x)]/(2x)=1/2×[f(a-x)-f(a)]/(-x)lim(x→a)[f(a-x)-f(a)]=f'(a)所以,1/2×f'(a)=-1,得f'(a)=-2所以,曲线y=

设f(x)为可导函数,且满足条件lim(x->0)[f(1)-f(1-x)]/2x=1,则曲线y=f(x)在(1,f(x

lim(x->0)[f(1)-f(1-x)]/2x=1lim(x->0)[f(1)-f(1-x)]/x=2即曲线在(1,f(1))处切线斜率为2

设函数f(x)可导,且满足f(x)-∫(上限为x,下限为0)f(t)dt=e^x,求f(x) 需要详解,

f'(x)-f(x)=e^xf'(x)e^(-x)-f(x)e^(-x)=1[f(x)e^(-x)]'=1d(f(x)e^(-x))=dxf(x)e^(-x)=x+Cf(x)=xe^x+Ce^x其中C

设函数f(x)在(-∞,+∞)可导,且满足f(0)=1,f'(x)=f(x),证明f(x)=e^x

f'(x)=f(x),即dy/dx=ydy/y=dx两边积分:lny=x+C两边取e指数:y=e^x+Cf(0)=e^0+C=1C=0所以,f(x)=e^x再问:两边积分那步是怎么得来的啊?再答:∫(

,设f(x)是R上的可导函数,且满足f'(x)>f(x),对于任意的实数a,下列不等式恒成立的是 f(a)>f(0) f

题目有点问题,a不能是任意实数,起码a不能为0a是不为零任意实数,f(a)>f(0)显示以x=0为对称轴的偶函数,显然不对.剩下f(a)>e^af(0)肯定对了.事实上f(a)>e^af(0)改写一下

设f(x)是R上的可导函数,且满足f'(x)>f(x),对于任意的实数a,下列不等式恒成立的是

正确答案选择B假设F(x)=-1F`(x)=0满足条件这样代入a=1发现AD错再代入F(x)=e^2xa=1发现B对

设f(x)为可导函数且满足 limx→0 [f(1)-f(1-x)]/2x = -1 ,则曲线y=f(x)在点(1,f(

limx→0[f(1)-f(1-x)]/2x=1/2limx→0[f(1)-f(1-x)]/x=1/2f'(1)=-1f'(1)=-2再问:你好,我想问一下如果我上下同时求导的话,那就是limx→0[

设f(x)为可导函数,且满足lim[f(1)+f(1-2x)]/2x=-1,x趋于0时,求曲线y=f(x)在点(1,f(

lim[f(1)-f(1-2x)]/2x=-1(中间是减号吧,否则有错)所以f'(1)=-1即y=f(x)在点(1,f(1))处的斜率为-1.再问:是减号谢谢咯~

设f(x)为可导函数,且满足lim[f(1)+f(1-x)]/2x=-1,x趋于0时,求曲线y=f(x)在点(1,f(1

由题,设1-x=t,则lim[1+f(t)]/2(1-t)=-1,t趋向于1因此可知,limf(t)=-1,t趋向于1;又因为f(x)可导,故其连续,故f(1)=-1.同时,上极限式可变为:lim[f

设f(x)为可导函数,且满足lim[f(1)-f(1-x)]/2x=-2,x趋于0时,求曲线y=f(x)在点(1,f(1

lim[f(1)-f(1-x)]/2x=-2化为:lim[f(1-x)-f(1)]/(-x)=-4因此有f'(1)=-4

设f(x)为可导函数,且满足lim[f(1)+f(1-2x)]/2x=-1,x趋于0时,求曲线y=f(x)在点(1,f(

lim[f(1)-f(1-2x)]/2x=lim[f(1)-f(1-2x)]/(0-2x)=f'(1)=-1∴曲线y=f(x)在点(1,f(1))处的斜率是-1再问:f'(1)=-1怎么来的?再答:f

设函数f(x) 可导,且f(0)=1 ,f'(-lnx)=x ,则f(1)=

令-lnx=t,则可得x=e^(-t)将之代入f'(-lnx)=x有:f'(t)=e^(-t),对其积分得:f(t)=-e^(-t)+C即f(x)=-e^(-x)+C(字母无所谓)再将f(0)=1代入

设函数f(x)在[a,b]可导 且f'(x)

|f(x)|=|f(x)-f(a)|=|f'(c)(x-a)|

17,设f(x)为可导函数,且满足∫0到x tf(t)dt=f(x)+x^2 求f(x)

∫[0→x]tƒ(t)dt=ƒ(x)+x²、两边求导xƒ(x)=ƒ'(x)+2x-->xy=y'+2xdy/dx=xy-2x=x(y-2)dy/(y-

8、设f(x)为可导函数,且满足∫0到x f(t)t^2 dt=f(x)+3x 求f(x)

∫(0,x)f(t)t^2dt=f(x)+3x,令x=0,那么:f(0)=0两边求导得:f(x)x^2=f'(x)+3,f'(x)=f(x)x^2-3,这是一阶线性方程,通解为:f(x)=e^(x^3

设函数f(x)可微且满足关系式:{积分符号从0到x }[2f(t)-1]=f(x)-1,求f(x)

等式两边令x=0得f(0)=1等式两边求导:2f(x)-1=f'(x)令y=f(x),则y'=2y-1,此为一阶非齐次线性微分方程,套用通解公式可得通解y=1/2+Ce^(2x).所以f(x)=1/2