设函数f(x)={3x 2 在x=2处连续

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:09:09
设函数f(x)={3x 2 在x=2处连续
)设函数f(x)=x2 ,x≤0

给你画出大概图,都是平滑曲线(2)如图x0取之范围为x<-1或x>9

设函数f(x)=x2-2x-8,则函数f(2-x2)在___________上为减函数

首先,你写法有问题是吧,应该是这样的:f(X)=X^2-2X-8f(2-X^2),把f(2-X^2)中设m=2-X^2代入f(X)以后,f(m)=m^2-2m-8,f(m)这是一个二次函数吧,二次函数

设函数f(x)=x2+bx+c,且f(-1)=f(3)则

f(-1)=f(3)1-b+c=9+3b+cb=-2f(-1)=1-b+c=3+c>cf(1)=1+b+c=c-1

设f(x)是定义在R上的函数,且对任意实数x,有f(1-x)=x2-3x+3.

(1)令t=1-x,则x=1-t∵f(1-x)=x2-3x+3.∴f(t)=(1-t)2-3(1-t)+3=t2+t+1.即f(x)=x2+x+1.(2)由(1)得g(x)=f(x)-(1+2m)x+

设函数f(x)=1+x2/1-x2,用定义证明:f(x)在区间(-1,0)上是减函数

证明:f(x)=(1+x²)/(1-x²)=(x²-1+2)/(1-x²)=-1+2/(1-x²)在(-1,0)上任取x1,x2,设x1

设函数f(x)=x2-6x+6,x>=0,3x+4,x

f(x)=x^2-6x+6x>=0=3x+4x

设函数f(x)=-x^3+3x+2分别在X1、X2处取得极小值、极大值

没问题再问:详细点再答:先求导求x1和x2,再用向量乘积公式,最后对称再问:你就说一说x=1,-1整么得来的再答:函数求导会吗

设函数f(x)=x2+x+12

当n≥1时,f(x)在[n,n+1]上是单调递增的,f(n+1)-f(n)=(n+1)2+(n+1)+12-n2-n-12=2n+2,故f(x)的值域中的整数个数是2n+2,n=0时,值域为[f(0)

【高中数学=函数】设函数f(x)的导函数f’(x)=3x2+f’(-1)x-3,f(,

f’(x)=3X^2+f’(-1)x-3中,令X=-1,得f’(-1)=0.所以,f(X)=X^3-3X+2那么,a^3-3a+2=17,a^3-3a-15=0.(1)式b^3-3b+2=-13,b^

设函数f(x)=x3-x2-3.

(1)由f(x)=x3-x2-3,得f′(x)=3x2-2x=3x(x-23),当f′(x)>0时,解得x<0或x>23;当f′(x)<0时,解得0<x<23.故函数f(x)的单调递增区间是(-∞,0

设函数f(x)=|x2-2x|.

(1)根据题意,得f(x)=|x2-2x|=x2−2x     x≤0或x≥22x−x2     0

设函数f(x)=x2-3x+1,则f(a)-f(-a)等于=?,

f(x)=x2-3x+1f(a)=a2-3a+1f(-a)=a2+3a+1f(a)-f(-a)=-6a

设函数f(x)=1/3x-2,求f(x2)和f(x+1)

f(x)=1/3x-2f(x2)=1/3x²-2f(x+1)=1/3(x+1)-2=1/3x-5/3

设函数f(x)=x2+2x

f′(x)=2x−2x2,①当x>1,即f′(x)>0时,函数f(x)=x2+2x在(1,+∞)上是增函数,②当0<x<1时,f′(x)<0,函数f(x)=x2+2x在(0,1)上是减函数,③当x<0

设函数f(x)=x2-2|x|-3(-3≤x≤3),

(1)∵-3≤x≤3,∴函数的定义域关于原点对称,又∵f(-x)=(-x)2-2|-x|-3=x2-2|x|-3=f(x)∴函数f(x)是偶函数.(2)f(x)=x2−2x−3,0≤x≤3x2+2x−

设函数f(x)=lnx+x2+ax

(1)f'(x)=1/x+2x+a,由f'(1/2)=0,得a=-3(2)f'(x)≥0在x∈(0,+∞)上恒成立.即g(x)=2x²+ax+1≥0,又g(0)=1,∴a∈[-4,-2√2]

设函数f(-x)=x2+3x+1,则f(x+1)=

f(-x)=x2+3x+1,将-x换为x所以f(x)=(-x)^2+3(-x)+1=f(-x)=x^2-3x+1所以f(x+1)=(x+1)^2-3(x+1)+1=x^2-x-1

设函数f(x)=x2-x+12

因为函数f(x)=x2-x+12的图象开口向上,并且对称轴为x=12,又定义域为[n,n+1],n∈N*,所以函数f(x)=x2-x+12在定义域为[n,n+1],n∈N*上是增函数,所以值域为:[n

设函数f(x)=x2-2x-3在区间[t,t+1]上的最小值为g(t),

∵f(x)=x^2-2x-3=(x-1)^2-4∴对称轴x=1分类讨论1.x=1∈[t,t+1]时,即0≤t≤1时,g(t)=-4;2.x=1t+1即t=2时,g(t)的最小值是g(2)=-3g(t)