设函数f(x)=x立方-3x²-ax 5-a(a大于零)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:28:47
(1)、将函数f(x)求导有;f’(x)=-3x平方+6x+9=-3(x+1)平方+12求f(x)的单调递减区间,则有:f(x)-3(x+1)平方+12(x+1)平方>4得f(x)的单调递减区间(-∞
f(x)=x^3-3x^2-9xf'(x)=3x^2-6x-9=0x^2-2x-3=0x1=-1x2=3当x<-1时,f'(x)<0,f(x)单调递减;当-1≤x≤3时,f'(x)≥0,f(x)单调递
答:f(x)定义域为全体实数.对f(x)求导,f'(x)=-x平方+4x-3.当f'(x)=0时,即-x平方+4x-3=0解得x1=1,x2=3.由于当x在区间(1,3)之间时,f'(x)>0,所以有
1,已知函数f(x)=x立方+6x平方,当X=0时,Y=0所以函数f(x)的图像经过原点,f(x)导=3x^2+6xf(0)导=02,已知函数f(x)=x立方+6x平方的导数为:f(x)导=3x^2+
f'(x)=3x^2-6x-9=3(x^2-2x-3)=3(x-3)(x+1)=0x1=-1,x2=3x3时,f'(x)>0-1
当x>1/2时,f(x)=3x+1>3,x>2/3当x3,x
f'(x)=-x^2+4ax-3a^2=-(x-a)(x-3a).当x0,f(x)递增;当x>3a时,f'(x)
f(X)=|2x-3|+|X+2|(这种题目的解法就是去绝对值,基本思路是分别令绝对值内的式子为0,得到x的几个解即x=3/2和-2,再将这两个值标在数轴上,将数轴分成三个部分,每个部分分别讨论去掉绝
1)由三角函数和差化积公式:f(x)=2sin(x+x+π/3)/2cos(x-x-π/3)/2=2sin(x+π/6)cos(π/6)=√3sin(x+π/6)f(x)的最小值为-√3.当x+π/6
f(x)'=3x^2-2x-1,当f(x)'=0=3x^2-2x-1时,有x=1或x=-1/3,利用穿针引线法知:x在x=-1/3处有极大值,x在x=1处有极小值;f(x)在(-无穷,-1/3]上单调
f(x)=x^2-6x+6x>=0=3x+4x
解题思路:利用图像数形结合解题解题过程:见附件同学你好,如对解答还有疑问,可在答案下方的【添加讨论】中留言,我收到后会尽快给你答复。感谢你的配合!祝你学习进步,生活愉快最终答案:略
(1)f'(x)=3x^2-9x+6≥m,因为f'(x)≥m恒成立.所以f'(x)的最小值恒≥m,因为x属于R,f'(x)得最小值为f'(x)=-3/4,所以-
解题思路:导数的计算解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.p
∵f′(x)=xx2+1-a,当f′(x)<0时,得a>xx2+1=1−1x2+1≥0,又∵a>0,∴a>0时,f(x)在[0,+∞)上是单调函数.
函数f(x)=lg(3/4-x-x^2)所以f(-x)=lg(3/4+x-x^2)-f(x)=-lg(3/4-x-x^2)=lg(3/4-x-x^2)^-1即f(x)!=f(-x)f(-x)!=-f(
因x=0处f(x)没有定义,显然M不为0又因f(x)=log3(x)(x>0)为增函数f(x)=-log1/3(-x)(x
f(5)=f[f(5+5)]=f[f(10)]f(10)=10-3=7,所以:f(5)=f[f(10)]=f(7)=f[f(7+5)]=f[f(12)]f(12)=12-3=9所以:f(5)=f[f(
F(X)=X^3+X^2-XF‘(X)=3X^2+2X-1=(X+1)(3X-1)X∈(-∞,-1)时,单调增;X∈(-1,1/3)时,单调减;X∈(1/3,+∞)时,单调增.极大值f(-1)=-1+