设函数f(x)=e^x-b (x-a)(x-b)无穷间断点X=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:44:43
设函数f(x)=e^x-b (x-a)(x-b)无穷间断点X=0
设函数f(x)=x(e^x+ae^-x 是偶函数,求a

因为f(x)是偶函数,所以f(-x)=f(x),因此-x(e^(-x)+ae^x)=x(e^x+ae^(-x)),即-xe^(-x)-axe^x=axe^(-x)+xe^x,对比两边xe^x与xe^(

一道高数题,设函数f(x)在[0,+∞)上连续,且f(x)=x(e^-x)+(e^x)∫(0,1) f(x)dx,则f(

很高兴为您解答,liamqy为您答疑解惑如果本题有什么不明白可以追问,再问:l应为含x的函数。怎么能提到积分号外来呀?再答:是个常数,积分是常数区域,,

设连续型随机变量X的分布函数为 F(x)=a+b*e^-x,x>0 ,求

利用积累分布函数的性质F(负无穷)=0,F(正无穷)=1,F是不减的那么b必须为0因为b>0时,F(负无穷)=正无穷

设函数f(x)=e^x-e^-x.

1.(1)f'(x)=e^x+e^(-x)求导公式的运用,然后用基本不等式.所以f'(x)=e^x+e^(-x)≥2根号(e^x+e^(-x))≥2就是求导求好了然后用基本不等式.不然怎么证(2)因为

设函数f(x)={a/x+b/(x²-x) x>1

为使函数f(x)在x=1处连续,x≤1,f(x)=x^2,x=1时,f(1)=1,x>1,f(x)=ax+b,x从1+方向趋近于1时,f(x)=ax+b应该趋近于1,即a+b趋近于1,a+b=1,为了

设函数f(x)=ex-e-x

(Ⅰ)f(x)的导数f'(x)=ex+e-x.由于ex+e−x≥2ex•e−x=2,故f'(x)≥2.(当且仅当x=0时,等号成立).(Ⅱ)令g(x)=f(x)-ax,则g'(x)=f'(x)-a=e

设函数f(x)=e^x(e 为自然对数的底数),g(x)=x^2-x,记h(x)=f(x)+g(x) .

(1)h(x)=f(x)+g(x)=ex+x2-x,∴h'(x)=ex+2x-1,令F(x)=h'(x),则F'(x)=ex+2>0,∴F(x)在(-∞,+∞)上单调递增,即h'(x)在(-∞,+∞)

设f(x)=e^x+a,x>0和3x+b,x

实在看不懂你的意思.可能发错了再问:再答:左极限等于右极限等于f(0);然后就可以了你这是高数题吧。。。应该很简单啊再问:就是不会证明啊,求高手给个明细吧

设f(x)的一个原函数为e^x/x,则∫x*f'(x)dx=

分布积分法∫f(x)dx=(e^x)/xf(x)=[(e^x)/x]'=(x-1)(e^x)/x²∫xf'(x)dx=xf(x)+∫f(x)dx=(e^x)(x-1)/x+(e^x)/x=(

函数导数1、设函数f(x)=[(e^x)-1)][(e^2x)-2][(e^3x)-3],则f'(0)是?2、设f(x)

再问:您好,请问第3题第二步是怎么化的,我知道结果是1/sinx,但中间那步我看不出你是怎么化出来的?再答:

设e^(-x)是f(x)的一个函数,则∫xf(x)dx= A e^(-x) (1-x)+C B e^(-x) (1+x)

题目应该有点问题,应该是:设e^(-x)是f(x)的一个原函数,转化为求∫xf(x)dx=∫xe^(-x)dx的不定积分,答案B、D有一个也弄错,答案应该是-(x+1)e^(-x)+C

设函数f(x)-e^(2x)+b,xo ...在x=0处可导,求a与b的值

f(x)在x=0处可导意味着以下两点成立:1.f(x)在x=0处连续2.f(x)在x=0处左右导数相等由1,必然有e^(2*0)+b=sin(a*0)即1+b=0,故b=-1由2,左导数=(e^(2x

设函数f(x)=e^x+sinx,g(x)=ax,F(x)=f(x)-g(x)

(1)F'(x)=e^x+cosx-a,x=0是极值点,要求F‘(0)=0即a=2(2)依题意,f(x1)=g(x2)=x2,故PQ=|x2-x1|=|f(x1)-x1|=|f(x1)-g(x1)|=

设函数f(x)=e^x,x≧0,x²,x

=∫(-1,1)f(x)dx=∫(-1,0)f(x)dx+∫(0,1)f(x)dx=e-2/3

设F(x)是f(x)的一个原函数,则∫e^(-x)f(e^(-x))dx=

这里只要凑微分就可以了,不用分部积分的∫e^(-x)f[e^(-x)]dx=∫-f[e^(-x)]de^(-x)而F(x)是f(x)的原函数,所以再积分一次,得到∫e^(-x)f[e^(-x)]dx=

设函数f x=e^2x-2x,lim f'(x)/e^x -1等于 ,x→0

lim(x→0)f'(x)/(e^x-1)=lim(x→0)[2e^2x-2]/(e^x-1)=lim(x→0)2(e^2x-1)/(e^x-1)=lim(x→0)4x/x=4

设函数f(x)=x|x-a|+b

1.若函数是奇函数,则f(0)=0,则b=0,又因为f(x)=f(-x),则a=02.写出分段函数.则显知a=03、a4(用反证法