设函数f(x)=e^x-b (x-a)(x-b)无穷间断点X=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:44:43
因为f(x)是偶函数,所以f(-x)=f(x),因此-x(e^(-x)+ae^x)=x(e^x+ae^(-x)),即-xe^(-x)-axe^x=axe^(-x)+xe^x,对比两边xe^x与xe^(
很高兴为您解答,liamqy为您答疑解惑如果本题有什么不明白可以追问,再问:l应为含x的函数。怎么能提到积分号外来呀?再答:是个常数,积分是常数区域,,
利用积累分布函数的性质F(负无穷)=0,F(正无穷)=1,F是不减的那么b必须为0因为b>0时,F(负无穷)=正无穷
1.(1)f'(x)=e^x+e^(-x)求导公式的运用,然后用基本不等式.所以f'(x)=e^x+e^(-x)≥2根号(e^x+e^(-x))≥2就是求导求好了然后用基本不等式.不然怎么证(2)因为
为使函数f(x)在x=1处连续,x≤1,f(x)=x^2,x=1时,f(1)=1,x>1,f(x)=ax+b,x从1+方向趋近于1时,f(x)=ax+b应该趋近于1,即a+b趋近于1,a+b=1,为了
(Ⅰ)f(x)的导数f'(x)=ex+e-x.由于ex+e−x≥2ex•e−x=2,故f'(x)≥2.(当且仅当x=0时,等号成立).(Ⅱ)令g(x)=f(x)-ax,则g'(x)=f'(x)-a=e
(1)h(x)=f(x)+g(x)=ex+x2-x,∴h'(x)=ex+2x-1,令F(x)=h'(x),则F'(x)=ex+2>0,∴F(x)在(-∞,+∞)上单调递增,即h'(x)在(-∞,+∞)
实在看不懂你的意思.可能发错了再问:再答:左极限等于右极限等于f(0);然后就可以了你这是高数题吧。。。应该很简单啊再问:就是不会证明啊,求高手给个明细吧
f(x)1时,-f(1)
分布积分法∫f(x)dx=(e^x)/xf(x)=[(e^x)/x]'=(x-1)(e^x)/x²∫xf'(x)dx=xf(x)+∫f(x)dx=(e^x)(x-1)/x+(e^x)/x=(
再问:您好,请问第3题第二步是怎么化的,我知道结果是1/sinx,但中间那步我看不出你是怎么化出来的?再答:
题目应该有点问题,应该是:设e^(-x)是f(x)的一个原函数,转化为求∫xf(x)dx=∫xe^(-x)dx的不定积分,答案B、D有一个也弄错,答案应该是-(x+1)e^(-x)+C
f(x)在x=0处可导意味着以下两点成立:1.f(x)在x=0处连续2.f(x)在x=0处左右导数相等由1,必然有e^(2*0)+b=sin(a*0)即1+b=0,故b=-1由2,左导数=(e^(2x
(1)F'(x)=e^x+cosx-a,x=0是极值点,要求F‘(0)=0即a=2(2)依题意,f(x1)=g(x2)=x2,故PQ=|x2-x1|=|f(x1)-x1|=|f(x1)-g(x1)|=
=∫(-1,1)f(x)dx=∫(-1,0)f(x)dx+∫(0,1)f(x)dx=e-2/3
这里只要凑微分就可以了,不用分部积分的∫e^(-x)f[e^(-x)]dx=∫-f[e^(-x)]de^(-x)而F(x)是f(x)的原函数,所以再积分一次,得到∫e^(-x)f[e^(-x)]dx=
lim(x→0)f'(x)/(e^x-1)=lim(x→0)[2e^2x-2]/(e^x-1)=lim(x→0)2(e^2x-1)/(e^x-1)=lim(x→0)4x/x=4
1.若函数是奇函数,则f(0)=0,则b=0,又因为f(x)=f(-x),则a=02.写出分段函数.则显知a=03、a4(用反证法