设函数f x是定义域为R且满足x1不等于x2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:42:09
f(x)是偶函数得f(-x)=f(x)f(x-1)是奇函数得f(-x-1)=-f(x-1),以x-1代换成x得f(-x-2)=-f(x)于是f(x+2)=f(-x-2)=-f(x),f(x+4)=-f
1.f(-0)=f(0)得f(0)=02.f(x-1)=-f(1-x)=-f(1+x)得出f(x)=-f(x+2)从而得到f(x-2)=-f(x)=f(x+2)故周期为43.由周期函数可以得到:(画图
解是x0时,f(x)=-x+1∴f(-x)=x+1∵f(x)是奇函数∴f(-x)=-f(x)∴f(x)=-f(-x)=-x-1∴x
1.令x=0得f(0)=f(0)f(0)f(0)=02.f(x)在R上的单调递增.证明:在R内任取x1,x2且x10f(x2-x1)>1f(x2)=f(x2-x1+x1)=f(x2-x1)f(x1)>
(1)令x=y=1f(1)=2f(1)则f(1)=0对于任意的x1>0、x2>0,不妨设x1>x2则x1/x2>1,则f(x1/x2)1+2√2/3或x02-x>00
再问:第二问求对任意值x,判断fx值的正负再答: 再问:哦哦上一问为什么fo=1或0??再答:
1、2f(x)+f(-x)=3x+2(1)令a=-xx=-a所以2f(-a)+f(a)=-3a+2即2f(-x)+f(x)=-3x+2(2)(1)×2-(2)3f(x)=6x+4+3x-2=3x+2f
x≤0时f(x)=-x^2+x则-x≥0f(-x)=-f(x)=x^2-x即x>0时,f(x)=x^2-x
f(x)=-f(x+2)=-[-f((x+2)+2)]=f(x+4)f(x-4)=f((x-4)+4)=f(x)再问:是关于周期函数的问题吗?再答:是啊而当-1
1首先证明f'(x)=kf(x)f'(x)=lim{Δx趋向于0}[f(x+Δx)-f(x)]/Δx=lim{Δx趋向于0}[f(x)f(Δx)-f(x)]/Δxf(x+Δx)=f(x)f(Δx)=l
解题思路:定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,画出函数f(x)的图象,可得8≥3a2-(-a2),从而可得结论.解题过程:
可以取到的,因为f(x+y)=fx+fy.取y=0,得到f(0)=0,再取y=-x,得到f(x)==-f(x),那么f(x)就是奇函数.函数图像关于原点对称,在(-6,+6)上必须有最大值和最小值.
f'(x)=e^x·(x²-3x+2)=e^x·(x-1)(x-2),当x∈(1,2)时,f'(x)<0,所以f(x)单调递减,即单调递减区间是(1,2)单调递增区间是(-∞,1),(2,+
f(x)=(x-a)²-a²+a对称轴x=a,开口向上若0
(1)令x=2,y=1得f(2)-f(1)=f(2-1)=f(1)所以f(2)=2f(1)=2×(-5)=-10(2)任取x1<x2则f(x1)-f(x2)=f(x1-x2)因为当x<0时,f(x)>
∵f(xy)=f(x)+f(y)∴令x=y=1时f(1)=f(1)+f(1)∴f(1)=0∴f(1/x)+f(x)=f(1/x*x)=f(1)=0.则f(1/x)+f(x)=__0____.
(1)∵f(x)是定义域为R的奇函数,∴f(0)=0∴1-(k-1)=0,∴k=2(2)∵函数f(x)=ax-a-x(a>0且a≠1),∵f(1)<0,∴a-1/a<0,又a>0,∴1>a>0.由于y