设函数f x=tx平方 2t

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:35:12
设函数f x=tx平方 2t
设函数f(x)=tx²+2t²x+t-1,x∈[-1,1],(1)若t>0,求f(x)的最小值h(t

/>t>0表示f(x)为开口向上的二次函数,f(x)的对称轴为x=t当t>1时,区间上函数单调减,h(t)=f(1)=2t^2+2t-1当0<t≤1时,区间上函数无单调性,最小值在顶

设函数fx=sin( φ-2x)(0

设函数fx=sin(φ-2x)(0

越快越好1.设发f(x)=-2x平方+3tx+t(x,7属于R)的最大值是u(t),当u(t)有最小值时,t的值为2.二

第一题key=-1/8ps.你题目咋这么多错别字?f(x)=-2X²+3tX-t根据a=-2知道f(x)最大值应满足x=3t/4---------步骤①代进计算得到9t²-6tu(

设函数f(x)连续,I=t∫(s/t)(0)f(tx)dx,其中s,t>0,求dI/dt

令u=tx,代入积分,得I=t∫(s/t)(0)f(tx)dx=∫(s)(0)f(u)du,于是,dI/dt=0.再问:s/t怎么变成s的?再答:做变量替换u=tx后,x取0时,u取0;x取s/t时,

设函数f(x)=tx+(1-x)/t(t>0),g(t)为f(x)在[0,1]上的最小值,求函数g(x)的最大值

这个得分情况讨论了,把t看成已知数,求出f(x)的最小值表达式g(t),有了这个那么g(x)的最大值就非常简单了具体过程如下把原式化简下,写成f(x)=(t-1/t)x+1/t;这是一次函数表达式,是

急用!设函数f(x)=2cosx(cosx+根号3sinx)-1.求fx最小正周期T,2.求fx单调递增区间

乘开得:2cosx的平方2倍根号3cosxsinx-1=cos2x根号3sin2x=2(1/2cos2x根号3/2sin2x)=2sin(2x派/6),T=派,单调递增区间:2k-/2小于等于2x/6

1、已知函数f(x)=-2x平方+3tx+t(t∈R),(1)求f(x)的最大值u(t),(2)求u(t)的最小值

1、已知函数f(x)=-2x平方+3tx+t(t∈R),(1)求f(x)的最大值u(t),(2)求u(t)的最小值解析:∵函数f(x)=-2x^2+3tx+t=-2(x-3t/4)^2+(9t^2+8

一道导数数学题.设函数fx=ax-2-lnx

原式即证:e^x>lnx+2∵e^x>x+1(用导数证)x-1>lnx(用导数证)∴e^x>x+1=x-1+2>lnx+2结论得证(上面的大于号都带等但不同是取等)

几道关于偏导的题1 设F(X,Y)具有一阶连续偏导数,且(Fx)的平方+(Fy)的平方不等于0.对任意实数t有F(tx,

设曲面为:f(x,y,z)=F(x,y)-z,则曲面上任一点(x0,y0,z0)处的法向量为{Fx(x0,y0),Fy(x0,y0),-1}直线的方向向量为{x0,y0,z0}则曲面Z=F(X,Y)上

设函数F(X)=tx^2+2t^2x+t-1(t>0)求f(x)的最小值h(t)

f'(x)=2tx+2t^2令f'(x)=0,得到x=-tort=0(舍去)f''(x)=2t>0所以f(x)在x=-t处有最小值h(t)=3t^3-1

设函数f(x)=tx^2+2t^2*x+t^2+t+1/t-1(t>0),求f(x)的最小值h(t)

将函数求导得:f'(x)=2tx+2t^2最小值时,f'(x)=0,所以解得x=-t,将x=-t代入函数,可求出值

设函数f(x)=tx²+2t²x+t-1(t≠0),求f(x)在区间[0,1]上的最大值h(t)?

对称轴是-t/2对对称轴的位置进行讨论-t/2<0时,即t>0h(t)=f(1)=2t²+2t-1 2.-t/2>1,即t<-2时h(t)=f(1)=2t&

设函数f(x)=tx^2+2xt^2+t-1(t>0)求f(x)得最小值h(t)

f(x)=tx^2+2xt^2+t-1f(x)=t(x+t)²+t-1-t³x为-t时最少值f(-t)=t-1-t³h(t)=t³-t+1

设f[x]=tx^2+2倍t的平方x+t平方+t+t分之1减1,t大于0,求F{X}的最小值H{t}

用导数法确定函数的单调性时的步骤是:(1)求出函数的导函数(2)求解不等式f′(x)≥0,求得其解集,再结合定义域写出单调递增区间(3)求解不等式f′(x)≤0,求得其解集,再结合定义域写出单调递减区

设函数f(x)=(1+x)的平方-2ln(1+x) 求fx的单调区间 0

f'(x)=2(x+1)-2/(x+1)-2x-a令f'=0解出a=2x/x+1因为0

已知函数fx=4x的三次方+3tx²-6t²x+t-1,x∈R,t∈R.

(1)当t=1时,f(x)=4x^3+3x^2-6xf'(x)=12x^2+6x-6f'(0)=-6,即曲线在(0,f(0))处切线的斜率k=-6f(0)=0,即切线过(0,0)点.故切线方程为y=-

急 已知函数fx=-x的平方+2ex+t-1,gx=x+x分之e的平方

1、g(x)=x+e^2/x>=2e,在x=e时取等号.(x>0)故m>=2e时,函数有零点.2、直接画图,g(x)是对勾函数,在x=e时,有最小值,f(x)是以x=e为对称轴的,开口向下的抛物线,这

设函数f(x)=x3-tx+ t-1 2 ,t∈R(1)试讨论函数f(x)在区间【0,1】上的单调性;(2)求最小的实

f'(x)=3x²-t(1)若t≤0,则f'(x)≥0,所以 f(x)在R上是增函数,当然,在[0,1]上也是增函数;(2)若t>0,令f'(x)≥0,解得x≤-(√3t)/3或x≥(√3t

已知t为实数,设x的二次函数y=x^2-2tx t-1的最小值为f(t),求f(t)在t大于等于0且小于等于2上的最大小

如果二次函数是y=x^2-2tx+t-1=(x-t)^2-t^2+t-1所以当x=t时函数取得最小值f(t)=-t^2+t-1.f'(t)=-2t+1,得驻点t=1/2.f(0)=-1,f(1/2)=

已知函数fx=x2-2lnx(1)求fx的单调区间(2)若fx≥2tx-1/x2在x属于(0,1]内恒成立求t的取值范围

(1)由题意知x>0,f′(x)=2x-2/x=[2(x1)(x−1)]/x,令f′(x)=0,得x=-1(舍)或x=1当0<x<1时,f′(x)<0当x>1时,f′(x)>0∴f(x)的