设函数f (x)=X^3-ax^2 x-1在点(1,f(1))处的切线与直线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 19:47:50
设函数f (x)=X^3-ax^2 x-1在点(1,f(1))处的切线与直线
设函数f(x)=x³-3ax+b(a≠0).

1)f'(x)=3x^2-3a在点(2,f(2))处与直线y=8相切,则有f'(2)=0=12-3a,得:a=4且f(2)=8=8-3*4*2+b,得:b=24即f(x)=x^3-12x+242)a0

设函数f(x)=ax

存在.∵b>0,①当a>0时,定义域是包含x=-ba<0,值域是f(x)≥0,不可能相等;②当a=0时,定义域是x≥0,值域也是f(x)≥0,符合题意;③当a<0时,定义域是[0,−ba],值域是[0

设函数f(x)=x^3+ax^2-9x-1(a

最小斜率就是与曲线y=f(x)相切的直线的最小斜率对函数f(x)=x^3+ax^2-9x-1(a

设函数f(x)=lnx-ax

解题思路:(I)首先求出函数的导数,然后根据导数与单调区间的关系确定函数的单调区间.(Ⅱ)当a=1/2时,g(x)=x(f(x)+1)=x(lnx-1/2x+1)=xlnx+x-1/2x2,(x>1)

设函数f(x)=x^3-3ax+b(a≠0)

1)由题意,y=f(x)过(2,8),且在该点处切线斜率为0f(x)=x^3-3ax+bf(2)=8-6a+b=8①f'(x)=3x^2-3af'(2)=12-3a=0②解①②得a=4,b=242)f

设函数f(x)=Inx-ax .求函数f(x)的极值点

函数定义域:x>0令f'(x)=1/x-a=0若a≤0,无极值;若a>0,x=1/a时取极值,f(1/a)=-lna-1

设a属于R,函数f(x)=ax^3-3x^2……

a=1先求导,把X=2代入导函数中令导函数等于零,得a=1再验证:将a=1代入原导函数中,求该函数的极值,得到2确为该函数的极值(极小值).所以a=1

设函数f(x)=lnx-2ax.

(1)依题意有,f′(x)=1x-2a.因此过(1,f(1))点的直线的斜率为1-2a,又f(1)=-2a,所以,过(1,f(1))点的直线方程为y+2a=(1-2a)(x-1).即(2a-1)x+y

设函数f(x)=x³-3ax+b(a不等于0)

1:f'(x)=3x^2-3a由题意知f'(2)=12-3a=0,且f(2)=8-6a+b=8解得a=4,b=242:f'(x)=3x^2-3a,若a0解得x>根号a或x

设函数f(x)=ax^2+bx+c((a≠0),满足f(x+1)=f(-x-3),且f(-2)>f(2),解不等式f(-

大致画个图先因为f(x+1)=f(-x-3)所以f(1)=f(-3)所以f(x)对称轴为x=-1又因为f(-2)>f(2)因为-2比2距离对称轴更近显然a=-1-2x^2+2x-3=-(x-1/2)^

设函数f(x)=ln x-ax.1.求f(x)的单调区间

(1)函数f(x)=lnx-ax求导后得到f‘(x)=1/x-a=(1-ax)/x当a0所以f(x)在(0,+∞)上单调递增当a>0时,令f‘(x)>0得到00g'(k+1)0ln(k+1)-k+1

设函数f(x)=ln(x+1),g(x)=ax/(a+x)

令F(x)=ln(x+1)-ax/(a+x),F‘=4/[(X+1)*(X+2)*(X+2)]恒大于零,所以F为单调增函数.所以F(x)大于等于F(0)=0,若a=2,所以当x≥0时f(x)≥g(x)

设函数f(x)=2ax(平方)-ax,f(x)=-6,则a=

f(x)=-6是不是写掉了条件哦还有X的定义域呢?

设函数f(x)=-1/3x^3+2ax^2+1/3a(0

由f(x)=-1/3x^3+2ax^2+1/3a(0

设函数f(x)=log3(3^x+1)+0.5ax是偶函数,则a=

f(x)=log3(3^x+1)+0.5axf(-x)=log3[3^(-x)+1]-0.5ax因为f(x)是偶函数所以log3(3^x+1)+0.5ax=log3[3^(-x)+1]-0.5axlo

设函数f(x)=lg(1+ax)-lg(1-3x)

答:f(-3)=lg(1-3a)-lg(1+9)=-1即lg(1-3a)-1=-1lg(1-3a)=0,解得a=0.f(x)=-lg(1-3x)因为f(t)=lg(t)为增函数,所以f(t)=-lg(

设a∈R.函数f(x)=ax^3-3x^2

f'(x)的导数:3ax^2-6x.令其x=2代入式子等于零即可.可以算出a=1(2)g(x)是单调减函数.可以得出g(x)的导数小于零的.g'(x)的导数:e^xf(x)(f(x)+xf'(x)=e

设函数f(x)=e^x+sinx,g(x)=ax,F(x)=f(x)-g(x)

(1)F'(x)=e^x+cosx-a,x=0是极值点,要求F‘(0)=0即a=2(2)依题意,f(x1)=g(x2)=x2,故PQ=|x2-x1|=|f(x1)-x1|=|f(x1)-g(x1)|=

设函数f(x)=lnx+x2+ax

(1)f'(x)=1/x+2x+a,由f'(1/2)=0,得a=-3(2)f'(x)≥0在x∈(0,+∞)上恒成立.即g(x)=2x²+ax+1≥0,又g(0)=1,∴a∈[-4,-2√2]