设二维随机变量(x,y)的联合概率密度为P(X Y)>1Y)>1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 02:18:33
∫∫f(x,y)dxdy=∫kxdx(0-->1)∫dy(0--->x)=∫kx^2dx(0-->1)=k/3=1--->k=3X的边缘概率密度fX(x)=∫3xdy(0-->x)=3x^2Y的边缘概
根据定义做,密度函数在其定义域上两重积分值为1,由题意知:该密度函数在矩形区域 0<x<2, 2<y<4有值,而其他区域为零,且k为常数,则:只在0<
1.f(X,Y)关于X的边缘概率密度fX(x)=f(x,y)对y积分,下限x,上限无穷,结果fX(x)=e^(-x)2.f(X,Y)关于Y的边缘概率密度fY(y)=f(x,y)对x积分,下限0,上限y
套公式即可.σ1^2=DX=16,σ2^2=DY=25.ρ=Cov(X,Y)/(σ1σ2)=0.6,√(1-ρ^2)=0.8.f(x,y)=(1/32π)e^{(-25/32)[x^2/16-3xy/
再问:为什么是用“1-”,而不能用整个面积去减?还有(4)的x的取值为什么是0到1而不是Y到1?我一直搞不懂这些取值是怎么定的?还有我最后一题看不懂...再答:第一个问题:整个面积的积分的概率就是等于
1)c(∫(0~2)ydy)(∫(0~2)xdx)=14c=1c=1/42)一看互相不干涉取值就可以说是独立了fx=(1/4)∫(0~2)xydy=x/2(0
由性质得:F(+∞,+∞)=1,则A(B+arctanx/2)(C+arctanY/3)=A(B+π/2)(C+π/3)F(-∞,+∞)=0A(B+arctanx/2)(C+arctanY/3)=A(
对f(x,y)求积分上下限都是0-1,这个积极结果=1求出c*1/2*1/3=1/6c=1c=6.(2)前面的积分结果中把上下限换成0-0.5,此时c=6,求值.(3)当0
我遭得住你是不是把老师不知道题都弄上来了哦嘿嘿当年我们怎么没想到这么个办法呢
(1)Z=X+YF(z)=P(Z
我想那个(x+y)应该在分子上的,如果在分母上可是巨麻烦的
(1)F(X,Y)=f(0,1)f(01)cx^2ydydx=c/2f(0,1)x^2dx=c/6x^3(0,1)=c/6=1c=6(2)P{X
这个是大学的知识啊,这里没积分符号,你可以看概率统计书,太难打了,第一问套公式第二问也是看fx(x)*fy(y)=fxy(xy)第三问就是图像法,在直线x+y=1里面的积分
(1)p(x,y)=(1/3)e^(-3x)(1/4)e^(-4y)-->k=1/12.X和Y独立.(2)P(0
1)P(xy<1)很简单,就是对下图阴影的面积求二重积分∫(1/2~2)∫(1/2~1/y)1/(4x²y³)dxdy= ∫(1/2~2)1/(4(1/2)y
再问:最后一题,X、Y是否相关?请问该怎么做?答案是线性相关。