设二维随机变量(X,Y)服从区域G上的均匀分布其中G是由y=x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 23:24:20
设二维随机变量(X,Y)服从区域G上的均匀分布其中G是由y=x
设二维随机变量(X,Y)在区域G={(x,y)|0≦x≦1,x²≦y≦x}上服从均匀分布,求

由于∫(x^2,x)∫(0,1)f(x,y)dxdy=1,且f(x,y)是常数,算出f(x,y)=6,边缘密度f(x)=∫(x^2,x)6dy=6x^2-6x;边缘密度f(y)=∫(y^0.5,y)6

概率(正态分布)设二维随机变量(X,Y)服从二维正态,则随机变量a=X+Y与b=X-Y独立的充分必要条件为:DX=DY如

X,Yarenormaldistributed,sothatX+Y,X-Yareparewiseindependentiffcov(X+Y,X-Y)=0,namelycov(x,x)+cov(X,Y)

二维随机变量X,Y服从(0,1)均匀分布,求Z=MAX(X,Y)

F(X)=(X-0)/(1-0)=x/1=xF(Y)=(Y-0)/(1-0)=y/1=y以上是两个均匀分布的分布函数F(Z)=F(MAX(X,Y))=1-(1-F(X))(1-F(Y))=1-(1-X

设二维随机变量(X,Y)服从区域G={(x,y):1

我假设x和y是独立的啦是不是漏写了Fx(x)=x-1.Fy(y)=(y-1)/2P(zt)=1-P(min(x,y)>t)=1-P(x>tandy>t)=1-P(x>t)P(y>t),(根据独立性)=

设二维随机变量(X,Y)在区域D上服从均匀分布,其中D:0

因为二维随机变量(X,Y)在区域D上服从均匀分布,所以当(x,y)∈D时,概率密度f(x,y)为区域D的面积的倒数,当(x,y)不在D内时,f(x,y)为0因为D:0

设二维随机变量xy在由x轴,y轴及直线2x+y=2所围成的三角形区域d上服从均匀分布,求

两个截距分别带入x=0得到y轴截距2y=0x1所以定义域三角形面积为1f(x,y)=1在上述给定区域fX(x)=∫(0~2-2x)1dy=2-2x0

设二维随机变量(X,Y)服从二维正态分布,求(X,Y)的联合概率密度函数f(x,y)

套公式即可.σ1^2=DX=16,σ2^2=DY=25.ρ=Cov(X,Y)/(σ1σ2)=0.6,√(1-ρ^2)=0.8.f(x,y)=(1/32π)e^{(-25/32)[x^2/16-3xy/

设二维随机变量(x,y)服从二维正态分布,其概率密度1/50π证明X与Y相互独立详见图片 求X,Y是否独立

f(x)=[(50pi)^(-1/2)]e^(-x^2)f(y)=[(50pi)^(-1/2)]e^(-y^2)f(x,y)=f(x)f(y)X与Y相互独立.再问:这样好像不对吧,有解题过程吗?再答:

设随机变量X和Y都服从正态分布,则(X,Y)一定服从二维正态分布吗?

不独立的话,函数形状在三维空间就不是那种草帽型扩散的函数相互独立联合密度里新的指数是-{(x-u1)^2/o^1+(y-u2)^2/o2^2}(x,y)在圆心为(u1,u2),双轴比例为o1,o2的所

设随机变量(x,y)服从二维正态分布,概率密度为f(x,y)=(1/2pi)*exp[-1/2*(x^2+y^2)],求

终于见到考研的题了,做初高中的做的我郁闷,你等等我算算哈相关系数为0,所以xy相互独立,边缘密度分别为N(0,1)标准正态,然后E(x^2)+E(y^2)=EX+DX+DY+EY=2再问:期待您的高见

设二维随机变量(X,Y)服从二维正态分布,其概率密度为f(x,y)=1/(50π) * e^[-(x^2+y^2)/50

X的概率密度g(x)=∫[-∞,+∞]f(x,y)dy=1/(5√2π)*e^(-x^2/50).Y的概率密度h(y)=∫[-∞,+∞]f(x,y)dx=1/(5√2π)*e^(-y^2/50).f(

设二维随机变量(X,Y )服从二维正态分布N(0,0,1,1,0)求P(X+Y0)

X,N(0,0,1,1,0)说明X,Y独立同分布N(0,1)fX(x)=φ(x).P(X+Y0)=P(X>0,Y>0)+P(X

设二维随机变量(x,y)服从二维正态分布,且E(X)=0,E(Y)=0,D(X)=16,D(Y)=25

f(x,y)~(u1,u2,σ1²,σ2²,ρ)其中u1=0,u2=0,σ1²=16,σ2²=25,ρ=Cov(x,y)=12把数字代入即可.再问:这个公式好长

二维随机变量(X,Y)服从二维正态分布,则X+Y与X-Y不相关的充要条件为

C啊~这是概率论第四章的啊~不相关就是协方差为0~然后逆推到D(X)=D(Y)就可以导来了

二维随机变量(U,V)服从二维正态分布,X=U-bV,Y=V,则(X,Y)服从二维正态分布的条件请进来看看!

首先,什么叫二维正态分布.2个高斯随机变量放在一起,叫高斯向量.何为2维,指的是两个向量关于实数域线性无关.(等价于covariance非退化)现在已知(U,V)线性无关,问经过一个线性变换后是否相关

设二维连续型随机变量(X,Y)服从区域D上的均匀分布,其中D={(X,Y)|0

有两种方法:第一可用卷积公式直接写答案,第二可以用一般的求法,就是把X+Y=Z当成一函数图象.然后利用积分区间讨论Z的范围,进而得到其概率密度函数,概率论与统计书上有的

设二维随机变量(X,Y)服从园域G:x^2+y^2

画出图形,对x积分得到fY(y),画一条水平线交圆于2点,其横坐标分别是-√R^2-y^2,√R^2-y^2,也就是积分上下限.对y积分可得到fX(x).同理画一条垂直线交圆于2点,纵坐标分别是-√R

设二维随机变量(x,y)服从x^2+y^2

(x,y)与圆心距离为:d=√(x²+y²)E(d)=1/(πR²)∫∫√(x²+y²)dxdy极坐标=1/(πR²)∫∫r²dr

设x,y分别服从正态分布,那么(x,y)是二维随机变量吗?

/>答案是B.X,Y分别是随机变量,(X,Y)是一个把样本空间映射到实数平面的函数.它是一个二维随机变量.D是错误的.A,B,C的区别在于(X,Y)的分布是不是二维正态分布.我们只需举两个例子就可以说