设二维连续型随机变量在区域上服从均匀分布,求关于的边缘概率密度及随机变量的方差.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 08:14:15
由于∫(x^2,x)∫(0,1)f(x,y)dxdy=1,且f(x,y)是常数,算出f(x,y)=6,边缘密度f(x)=∫(x^2,x)6dy=6x^2-6x;边缘密度f(y)=∫(y^0.5,y)6
二维随机是服从均匀分布的,所以根据公式知道:f(x,y)=1/8(D区域面积的倒数)所以X的边缘分布为:∫(0,x)1/8dy=x/80
均匀分布因此设f(x,y)=k.二重积分上下限分别(0,y)dx和(0,2)dy得2k=1,k=0.5因此f(x,y)=0.5,f(x)=积分0.5,上下限分别(0,x)dy=0.5x因此F(X)=0
概率理论的主题,这是最好的大学的咨询团队
有点麻烦,牵涉到一些概率论术语.我帮你做出来再详细解释下. 随机变量XY的联合概率密度为:f(x,y)=4,(x,y属于D)或0 (其它),(二维均匀分布的概率密度都是这样算,即1
因为二维随机变量(X,Y)在区域D上服从均匀分布,所以当(x,y)∈D时,概率密度f(x,y)为区域D的面积的倒数,当(x,y)不在D内时,f(x,y)为0因为D:0
cxysxsgwhm77766041542011-09-2422:59:06vxjfjghunc\x0df(x,y)=2E(X)=∫[-1,0]dx∫[-1-x,0]2xdy=∫[-1,0]2x(1+
两个截距分别带入x=0得到y轴截距2y=0x1所以定义域三角形面积为1f(x,y)=1在上述给定区域fX(x)=∫(0~2-2x)1dy=2-2x0
f(x,y)=1/2,x>0,y>0,x+y
随机变量(X,Y)在区域D服从均匀分布,则联合密度函数P(X,Y)=1/Ω,Ω=1/2即区域D的面积,为直线x=0,y=x,y=1所围的部分,所以P(X,Y)=2
学姐,你又粗现了.条件概率公式:f(x,y)/f(x)=f(y|x),令x=0,有这个公式算一下,答案立刻就出来了
再问:为什么是用“1-”,而不能用整个面积去减?还有(4)的x的取值为什么是0到1而不是Y到1?我一直搞不懂这些取值是怎么定的?还有我最后一题看不懂...再答:第一个问题:整个面积的积分的概率就是等于
联合密度有问题,改为4xy就行了fX(x)=∫[0,1]4xydy=2x(0
1、由密度函数的性质∫[0--->+∞]∫[0--->+∞]Ae^(-2x-3y)dxdy=1即:A∫[0--->+∞]e^(-2x)dx∫[0--->+∞]e^(-3y)dy=1得:A[-(1/2)
有两种方法:第一可用卷积公式直接写答案,第二可以用一般的求法,就是把X+Y=Z当成一函数图象.然后利用积分区间讨论Z的范围,进而得到其概率密度函数,概率论与统计书上有的
求出区域面积s=1/2...然后用1去除得:f(x,y)=2(当(x,y)属于D),f(x,y)=0(当(x,y)不属于D).
就是这么写得再问:屁话!~再答:自己明白还用问,书也不一定全部是正确的。
Fz(z)=P(max(X,Y)
1)E(X)=E[E(X|Y)],就是先对某Y值上的X积分再对全局积分2)你求出面积,其倒数就是了.3)E(Z)=E(2X+Y)=2E(X)+E(Y)之后如1计算X和Y期望,D(Z)=E(Z^2)-E