设二元随机(X,Y)在区域G求方差

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:22:06
设二元随机(X,Y)在区域G求方差
设二维随机变量(X,Y)在区域G={(x,y)|0≦x≦1,x²≦y≦x}上服从均匀分布,求

由于∫(x^2,x)∫(0,1)f(x,y)dxdy=1,且f(x,y)是常数,算出f(x,y)=6,边缘密度f(x)=∫(x^2,x)6dy=6x^2-6x;边缘密度f(y)=∫(y^0.5,y)6

设G表示抛物线y=x2及直线y=x所包围的区域,X,Y服从G上的均匀分布,求联合概率密度

求围成图形的面积抛物线y=x2及直线y=x交点(0,0)(1,1)G=S(0,1)(x-x^2)dx=x^2/2|(0,1)-x^3/3|(0,1)=1/6f(x,y)=6(0

设(x,y)在曲线y=x^2 ,y=x所围成的区域G内服从均匀分布,试求

先求出两条曲线交点:(0,0)和(1,1)再求出所围区域的面积∫{0到1}(x-x^2)dx=(x^2)/2-(x^3)/3|{上1,下0}=1/6所以联合概率密度函数是f(x,y)=6,(x,y)属

设G为由抛物线y=x*x和y=x所围成区域,(X,Y)在区域G上服从均匀分布,求:(1)X,Y 的联合概率密度及边缘概率

根据定积分算出G的面积,A=∫[0,1][x-x²]dx=1/61.所以可以知道X,Y的联合概率密度为p(x,y)=1/A=6(x,y)∈G0(x,y)∉G2.边缘概率密度只要利

设二维随机变量(X,Y)服从区域G={(x,y):1

我假设x和y是独立的啦是不是漏写了Fx(x)=x-1.Fy(y)=(y-1)/2P(zt)=1-P(min(x,y)>t)=1-P(x>tandy>t)=1-P(x>t)P(y>t),(根据独立性)=

设二维随机变量(X,Y)在区域G={(x,y)|0

cxysxsgwhm77766041542011-09-2422:59:06vxjfjghunc\x0df(x,y)=2E(X)=∫[-1,0]dx∫[-1-x,0]2xdy=∫[-1,0]2x(1+

设两随机变量(X,Y)在区域D上均匀分布,其中D={(x,y):|x|+|y|≤1}.又设U=X+Y,V=X-Y,试求:

积分变量就是1/2,还非要积出来吗,如果非求结果那你就在Y=u-X和Y=-1-X之间定积分区间,(以第一个为例)有点麻烦用几何意义多简单,你那样太麻烦了刚才把u弄错了,我直接当成是上半部分了,不好意思

关于数学分析的证明题设函数f(x,y),g(x,y)在有界闭区域D上有连续偏导数,且f(x,y)=g(x,y),对任意A

设h(x,y)=f(x,y)-g(x,y).则h(x,y)在D上有连续偏导数,且在∂D上恒等于0.由h(x,y)连续,D是有界闭区域,h(x,y)可在D上取得最大最小值.若最大最小值都是在

设(X,Y)服从区域G={(x,y)/0

先写出(X,Y)的联合概率密度p(x,y)=1/4(x,y)∈G0其他则P(X与Y至少有一个小于1)=1-P(X≥1,Y≥1)=1-∫∫[x>1,y>1]p(x,y)dxdy=1-∫∫[1≤x再问:那

设二维随机变量(X,Y)在区域G上服从均匀分布,其中G是由曲线y=x^2和y=x所围成的,求联合概率密度

本题主要考察均匀分布和定积分的知识.先画图,标出区域G,积分求出区域G的面积.所以当0

求联合概率密度设区域D是直线y=x,x=1及x轴所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)的联合

求出区域面积s=1/2...然后用1去除得:f(x,y)=2(当(x,y)属于D),f(x,y)=0(当(x,y)不属于D).

设随机变量(X,Y)在平面区域D上服从均匀分布,其中D是由直线y=x和曲线y=x^2所围成的区域,求(X,Y)的边缘概

设(X,Y)的联合密度函数f(x,y)=a(x,y)∈D首先有概率完备性知1=∫∫f(x,y)dxdy=∫∫adxdy=a∫(0,1)dx∫(x^2,x)dy=a/6所以a=6.(X,Y)的联合密度函

设随机变量(x,y)在由曲线y=x^2,y=根号x所围成的区域G均匀分布.求概率密度

只需求出区域G的面积,(x,y)的概率密度的非零部分的表达式即为区域G的面积的倒数曲线y=x^2,y=根号x交与x=0,x=1两点,面积为 (积分)\int_0^1(根号x-x^2)dx=1

概率论:设(X,Y)服从下列区域D上的均匀分布,求p{X+Y

既然是均匀分布,用D1的面积占D的面积的比例更简单,一看就知道答案是1/2再问:请教,这个积分解的过程是什么,我解出来总是带x,答案是含有y的一个值再答:常数的积分是这个常数值乘以区间长度,也就是4*

设随机变量(X,Y)在区域G上服从均匀分布,G为y轴,x轴与直线y=2x+1所围成的区域,求随机变量的分布函数

你好,求Y=2X+1与X轴的交点啊,令Y=0,解得X=-0.5.面积都不用积分,是个简单三角形,知道底和高,简单算下就知道了.

设二维随机向量(X,Y)服从区域G={(x,y)\0

图就不画了.在直角坐标系中,G表示的区域为x轴、y轴、x=1、y=1围成的正方形区域,面积=1P表示的区域为x轴、y轴、直线y=-x+1围成的三角形区域,面积=1/2P{x+y

设二元随机变量(X,Y)在由x,y轴及直线x+y+1=0所围成的区域上服从均匀分布,求E(X),E(2X-3Y),E(X

y=-(x+1),所围区域x(-(-1,0)E(x)=(a+b)/2=(-1+0)/2=-0.5E(2x-3y)=E(2x-3*(-x-1))=E(5x+3)=5E(x)+3=0.5E(xy)=-E(