设三阶矩阵A的特征值为1,2,3,则|A B|

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:32:26
设三阶矩阵A的特征值为1,2,3,则|A B|
已知三阶矩阵A的特征值为-1,2,3,则(2A) ^(-1)的特征值为?

设λ是A的特征值,那么有:Ax=λx两边同乘2:2Ax=2λx两边同左乘2A的逆:x=2λ[(2A)^(-1)]x整理一下:[(2A)^(-1)]x=[1/(2λ)]x即1/(2λ)是(2A)^(-1

已知n价可逆矩阵A的特征值为λ,则矩阵(2A)^(-1)的特征值为?

1/(2λ),基本上特征值和矩阵是满足普通的函数对应关系.

设三阶矩阵A的特征值为-1,1,2,求|A*|以及|A^2-2A+E|

此题考查特征值的性质用常用性质解此题:1.A的行列式等于A的全部特征值之积所以|A|=-1*1*2=-22.若a是可逆矩阵A的特征值,则|A|/a是A*的特征值所以A*的特征值为2,-2,-1所以|A

设三阶矩阵A的特征值为 1,2,3,

令P=110101111则P^-1AP=diag(1,2,3)所以A=Pdiag(1,2,3)P^-1

设三阶矩阵A的特征值为-1.0.2,则4A-E的特征值为?

答案是-5,-1,7,用定义如图计算.经济数学团队帮你解答,请及时采纳.

已知3阶矩阵A的特征值为1、2、-3,则它的逆矩阵的特征值是?

|λE-A|=0根为1,2,-3则|A|≠0(因为λ=0不是上面方程的根)设B是A的逆矩阵|λE-A|=0等价于|λAB-A|=0等价于|λB-E|=0(因为A是行列式不等于0)等价于|(1/λ)E-

A矩阵于B矩阵,A的特征值为1,-2,3,.|b|=?

:所求的B的行列式=1×(-2)×3=-6.

三阶矩阵A的特征值为2,1,1,则矩阵B=(A*)^2+I的特征值为?

|A|=2*1*1=2A*的特征值为(|A|/λ):2/2=1,2/1=2,2/1=2(A*)^2+I的特征值为(λ^2+1):2,5,5再问:为什么A*的特征值为(|A|/λ)?再答:

设三阶矩阵A的三个特征值为-1,3,5,则A-3E的特征值?

知识点:若a是A的特征值,则f(a)是f(A)的特征值.f(x)是多项式因为三阶矩阵A的三个特征值为-1,3,5所以A-3E的特征值为-1-3=-4,3-3=0,5-3=2.再问:做题突然发现这是盲点

已知矩阵A的特征值为1,-2,3,则B=(2A+I)^-1特征值为

因为矩阵A的特征值为1,-2,3所以2A+I的特征值分别为2+1=3,2×(-2)+1=-3,2×3+1=7所以B=(2A+I)^-1特征值为1/3,-1/3,1/7.

已知三阶矩阵A的特征值为1,-2,3,则(2A)、 A^(-1)的特征值为?

|2A|的特征值为8*1.8*3.8*(-2)=8.-16.24A^(-1)的特征值为,1.-0.5.1/3再问:怎么算的呢??再答:公式

设2为矩阵A的一个特征值,则矩阵3A必有一个特征值?

2为A的一个特征值,根据定义,|2E-A|=03|2E-A|=0|6E-3A|=0根据定义,6是矩阵3A的一个特征值

三阶矩阵A的特征值为1,2,3,则A^2+E的特征值为

AX=λX(A^2)X=(λ^2)XEX=X(A^2+E)X=(λ^2+1)XA^2+E的特征值为2,5,10再问:谢谢你

已知3阶矩阵A的特征值为1、-1、2,则矩阵A2+2E的特征值为

A2的特征值为1,1,4A2+2E的特征值为3,3,6