设三阶矩阵A有二重特征,A可否对角化
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:55:01
ⅰ.矩阵A的特征多项式f(x)=∏{1≤i≤k}(x-λi)^(ai)最小多项式g(x)=∏{1≤i≤k}(x-λi)^(bi)A的Jordan标准型中有ci个关于λi的Jordan块,根据定理得:则
首先矩阵必须是n阶方阵,然后秩和0的重数的联系不是那么简单的0的代数重数可能大于n-a,只能说几何重数一定是n-a
相似必等价,等价未必相似A与A-λE不等价,因为等价的充分必要条件是秩相同
再问:我看例题都是直接给出了因式。有什么技巧吗?再答:这个就是按照行列式的计算技巧计算就可以的
1.特征值分别记为a1,a2,a3,则tr(A)=a1+a2+a3=4,令a1=a2=-1,则a3=6所以A的特征值为-1,-1,6,所以A逆的特征值为1/a1,1/a2,1/a3,即-1,-1,1/
1.不一定这要看每个k重根是否有k个线性无关的特征向量2.P^-1AP=B时特征多项式|B-λE|=|P^-1AP-λE|=|P^-1||A-λE||P|=|A-λE|所以A,B的特征多项式相同,进而
把λ=2带入|λI-A|,得:[11-1-X-2-Y33-3]这个矩阵的秩为3-2=1,所以都和第一行平行,X=2,Y=-2tr(A)=∑λ=10,所以另一个λ=6对应的特征向量为P1,P2,P3,则
实对称矩阵一定可以相似对角化,并且相似于矩阵diag(λ1,λ2,…,λn),AB相似则AB分别相似于其特征值构成的对角矩阵,两对角矩阵相似=>其对角线上的元素
(A-2E)B=0B的列向量都是(A-2E)x=0的解所以属于特征值-2的线性无关的特征向量至少有2个所以-2至少是2重特征值(但不能说明恰是2重的,需结合其他条件)再问:刘老师,其实我是搞不清特征根
秩是2,另一特征值是0.不同特征值的特征向量垂直,条件给了\alpha_1=(1,1,0),\alpha_2-\alpha_1=(1,0,1)是6的两个特征向量,所以(1,1,0)*(1,0,1)=(
A不可逆时,0一定是特征值.经济数学团队帮你解答.请及时评价.再问:还想问一下再问:关于这个题再问:再答:
(A)=n-2.
如果矩阵A与一对角阵特征值相同,且二重特征值有两个线性无关的特征向量,能说明A与对角阵相似.若矩阵B与对角阵特征值相等,但是二重特征值只有一个特征向量,说明B与对角阵不相似,B只能化简为约当标准形了.
首先这里的A*是转置共轭的意思,而不是通常所说的伴随矩阵(adjugate),否则结论不成立."theeigenvectorsofAandtheeigenvectorsofA*formabiortho
ab=ba可以得到a和b可以同时上三角化,然后就显然了再问:能不能说得再详细一点,高代是自学的,没上过课,学得不太好再答:先去看这个问题http://zhidao.baidu.com/question
矩阵若可以对角化.矩阵就和这个对角矩阵相似,这个对角矩阵的对角线的值就可以是特征值.相似矩阵的秩相等.所以,有n个非0的特征值(例如λ=1是二重根的话,就算是两个非0特征值),矩阵的秩就是n.对这题,
1、根据定义:Ax=λx,那么x是特征向量,λ是特征值当λ=2是二重特征值时,Ax=2x要有两个线性无关的解,这样A的特征无关向量才能有3个2、这是不能的,λ=2是A的二重特征值,可能有两个线性无关的
|λE-A|=|(λE-A)^T|=|λE-A^T|,故A与A^T有相同的特征多项式,因而也有相同的特征值.
二阶矩阵特征多项式有是个二次多项式,已知它的两个根是1和2,所以特征多项式就是(t-1)(t-2)即t^2-3t+2再答:有哪里不清楚继续问吧再答:记得采纳我的答案哦~再问:谢谢啦
因为R(A-2E)=1所以A的属于特征值2的线性无关的特征向量有3-1=2个.而A是实对称矩阵,k重特征值有k个线性无关的特征向量所以2是A的二重特征值.