设三阶矩阵A=(),B为三阶非零矩阵,且AB=0,求t的值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 19:32:12
|B|≠0故B可逆故ABB^-1=0*B^-1故A=0
按照我对这道题目意思的理解,感觉是有问题的吧,如取A,B均为二阶单位阵,代进去算式不成立啊
三阶矩阵a的特征值为-2,-1,2,则矩阵b=a^3-3a^2+2e的特征值分别为1.(-2)³-3×(-2)²+2=-8-12+2=-182.(-1)³-3×(-1)&
参考一下再问:有没有更简单的方法?我们好像没学到过那条推论啊。。。QAQ再答:行列式拉普拉斯展开式有没有学过?
:所求的B的行列式=1×(-2)×3=-6.
|A|=6|从上到下a,c,d|=18,|从上到下a,c,d|=3.|A-B|=|从上到下a-b,c,2d|=2|从上到下a-b,c,d|=2[|从上到下a,c,d|-|B|]=2
高中数学还号大学数学已经都忘光了看来要专业人士解决了!自卑了
这是什么结论?A,B不同型,不能相加再问:那请问r(A)
小问题1似乎是特征分解.[V,D]=eig(K);这样就可以得矩阵V和对角阵D,满足K*V=V*D再问:恩。。这样特征值对角阵的确可以求出来,变化向量P怎么求了呢再答:P不就是V么。。。。V是单位正交
你的题目有问题啊,C用不上?A,B正定,他们的差不一定对称啊.比如A=(101;210)B=(100,4;1,101)
因为B^T=(AA^T)^T=(A^T)^TA^T=AA^T=B所以B是对称矩阵
∵C是n阶可逆矩阵∴C可以表示成若干个初等矩阵之积,即C=P1P2…Ps,其中Pi(i=1,2,…,s)均为初等矩阵.而:B=AC,∴B=AP1P2…Ps,即B是A经过s次初等列变换后得到的,又初等变
由于C可逆,所以r(AC)=r(A)即有r=r1故(C)正确.
ABA=2A+BAAB=2E+BAB-B=2E(A-E)B=2EB=2(A-E)^-1
可以AB=0等式两边左乘A^-1即得B=0再问:您好,那如果A不可逆,要如何处理?再答:A不可逆,B就不一定等于0再问:对于这一结论,只能举例吗,能否通过公式说明B不一定等于0?再答:矩阵的乘法有零因
参考一下
A进行LU分解,使得L行满秩,U列满秩,令X=U'(U'U')^-1(LL')^-1L'AXA=LUU'(U'U')^-1(LL')^-1L'LU=A可以看出X=U'(U'U')^-1(LL')^-1
A、B相似,说明存在可逆的P,A=PBP逆B正交,说明B'=B逆,B'表示转置所以|A|²=|A²|=|AA|=|PB(P逆P)BP逆|=|P||P逆||B||B|=|P|*1/|
这里是用到了矩阵秩的不等式R(BA)≤min{R(B),R(A)}即BA的秩小于等于A和B中秩较小的一个那么显然在这里A的秩一定小于等于3,所以当然可以得到R(BA)≤3,不管B的秩是多少
矩阵的乘法不满足交换律在AX=B两边左乘A^-1得A^-1AX=A^-1B,这样是没问题的所以有X=A^-1B