设三阶矩阵A=(),B为三阶非零矩阵,且AB=0,求t的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 19:32:12
设三阶矩阵A=(),B为三阶非零矩阵,且AB=0,求t的值
线性代数 A,B为可逆矩阵,求证A^(-1)B+B^(-1)A=E

按照我对这道题目意思的理解,感觉是有问题的吧,如取A,B均为二阶单位阵,代进去算式不成立啊

设三阶矩阵a的特征值为-2,-1,2,矩阵b=a^3-3a^2+2e则b的行列式为

三阶矩阵a的特征值为-2,-1,2,则矩阵b=a^3-3a^2+2e的特征值分别为1.(-2)³-3×(-2)²+2=-8-12+2=-182.(-1)³-3×(-1)&

设A,B均为2阶矩阵,A*,B*分别为A,B的伴随矩阵,若|A|=2,|B|=3,则分块矩阵

参考一下再问:有没有更简单的方法?我们好像没学到过那条推论啊。。。QAQ再答:行列式拉普拉斯展开式有没有学过?

A矩阵于B矩阵,A的特征值为1,-2,3,.|b|=?

:所求的B的行列式=1×(-2)×3=-6.

矩阵,设三阶矩阵A=【从上到下a,2c,3d】,三阶矩阵B=【从上到下b,c ,d】,其中a,b,c,d均为三维行向量,

|A|=6|从上到下a,c,d|=18,|从上到下a,c,d|=3.|A-B|=|从上到下a-b,c,2d|=2|从上到下a-b,c,d|=2[|从上到下a,c,d|-|B|]=2

设 m*n矩阵A的秩为r,求矩阵B=(A的广义逆矩阵)×A的奇异值矩阵

高中数学还号大学数学已经都忘光了看来要专业人士解决了!自卑了

A为m*n矩阵 B为n*s矩阵 证明r(A)=

这是什么结论?A,B不同型,不能相加再问:那请问r(A)

已知矩阵n*n矩阵B=A*A',A为n*r矩阵,求解A矩阵,matlab如何实现

小问题1似乎是特征分解.[V,D]=eig(K);这样就可以得矩阵V和对角阵D,满足K*V=V*D再问:恩。。这样特征值对角阵的确可以求出来,变化向量P怎么求了呢再答:P不就是V么。。。。V是单位正交

A,B为正定矩阵,C是可逆矩阵.证明A-B为是对称矩阵.

你的题目有问题啊,C用不上?A,B正定,他们的差不一定对称啊.比如A=(101;210)B=(100,4;1,101)

A为n阶矩阵 B=AA^T 求B是对称矩阵`

因为B^T=(AA^T)^T=(A^T)^TA^T=AA^T=B所以B是对称矩阵

设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则(  )

∵C是n阶可逆矩阵∴C可以表示成若干个初等矩阵之积,即C=P1P2…Ps,其中Pi(i=1,2,…,s)均为初等矩阵.而:B=AC,∴B=AP1P2…Ps,即B是A经过s次初等列变换后得到的,又初等变

设三阶矩阵A,B满足ABA=2A+BA,其中A省略.化简求B矩阵

ABA=2A+BAAB=2E+BAB-B=2E(A-E)B=2EB=2(A-E)^-1

矩阵A乘矩阵B等于零矩阵,矩阵A可逆,是否可以判断矩阵B为零矩阵,理由?

可以AB=0等式两边左乘A^-1即得B=0再问:您好,那如果A不可逆,要如何处理?再答:A不可逆,B就不一定等于0再问:对于这一结论,只能举例吗,能否通过公式说明B不一定等于0?再答:矩阵的乘法有零因

设A,B为n阶矩阵,如果B为矩阵方程AXA=A的唯一解,证明:A为矩阵方程BXB=B的解

A进行LU分解,使得L行满秩,U列满秩,令X=U'(U'U')^-1(LL')^-1L'AXA=LUU'(U'U')^-1(LL')^-1L'LU=A可以看出X=U'(U'U')^-1(LL')^-1

A,B均为n阶矩阵,B B为正交矩阵,则|A|^2=

A、B相似,说明存在可逆的P,A=PBP逆B正交,说明B'=B逆,B'表示转置所以|A|²=|A²|=|AA|=|PB(P逆P)BP逆|=|P||P逆||B||B|=|P|*1/|

设A为3*4矩阵,B为4*3矩阵,BAX=0必有非零解.

这里是用到了矩阵秩的不等式R(BA)≤min{R(B),R(A)}即BA的秩小于等于A和B中秩较小的一个那么显然在这里A的秩一定小于等于3,所以当然可以得到R(BA)≤3,不管B的秩是多少

老师,A为矩阵,B为矩阵.AX=B,这个矩阵方程求解的时候,X=A^-1B,为什么不是X=BA^-1?

矩阵的乘法不满足交换律在AX=B两边左乘A^-1得A^-1AX=A^-1B,这样是没问题的所以有X=A^-1B