设三阶矩阵A,A-E和E 2A均不可逆,求A E的行列式

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:15:39
设三阶矩阵A,A-E和E 2A均不可逆,求A E的行列式
已知A和B都是n阶矩阵,且E-AB是可逆矩阵,证明E-BA可逆

反证,若E-BA不可逆,则存在X不为0,使(E-BA)X=0(方和有非零解)->X=BAX,则(E-AB)AX=AX-ABAX=AX-AX=0也即(E-AB)Y=0有非零解(其中Y=AX),与题设矛盾

请教高手线性代数证明题:矩阵A和单位矩阵E合同,求证A的特征值都大于0

方法很多,一种做法如下:A的单位矩阵合同,则存在可逆矩阵C,使得A=C'C,这里C'表示转置设A的任一特征值是λ,相应的特征向量是x,则Ax=λx,即C'Cx=λx两边同时左乘以x',得(Cx)'(C

设三阶矩阵A,A-E和E+2A均不可逆,求A的特征值

由特征值的定义:|A-sE|=0的s为特征值不可逆等价于行列式等于0而|A-0E|=0,|A-1E|=0,|A-(-0.5)E|=0所以特征值为0,1,-0.5

矩阵 逆矩阵 AA*=A*A=|A|E |A|是行列式,怎么乘一个矩阵 单位矩阵E

|A|E是矩阵的数乘一般情况:A=(aij),则kA=(kaij).即矩阵A中每个元素都乘k所以|A|E=|A|0...00|A|...0....00...|A|

求N阶矩阵A满足A方+A-3E=0,证明:A和A+2E都可逆,并求出他们的逆矩阵.

证A可逆A²+A-3E=0A(A+E)=3EA(A+E)/3=E所以A可逆,且A的逆矩阵为(A+E)/3证A+2E可逆A²+A-3E=0(A+2E)(A-E)=E所以A+2E可逆,

设A为n阶非零矩阵,E为n阶单位矩阵,若A^3=0,则E-A和E+A是否可逆

另一个方法是这样:令B=E-A,则A=E-B代入A^3=0得E-3B+3B^2-B^3=0所以B(B^2-3B+3E)=E.所以B可逆,且B^-1=B^2-3B+3E.即E-A可逆,且(E-A)^(-

设A为n阶矩阵,|E-A|≠0,证明:(E+A)(E-A)*=(E-A)*(E+A)

由于(E-A)(E+A)=(E+A)(E-A)=E²-A²=E-A²对(E-A)(E+A)=(E+A)(E-A),两边分别左乘和右乘(E-A)逆有(E+A)(E-A)逆=

设矩阵A满足A的平方=E,证明A+2E是可逆矩阵

由于(A+2E)(A-2E)=A^2-4E=-3E,所以(A+2E)(-A/3+2E/3)=E,因此A+2E可逆.

设矩阵A满足A^2=E.证明:A+2E是可逆矩阵.

设矩阵A满足A^2=E.===>(A+2E)(A-2E)=5E===>A+2E的逆矩阵为0.2(A-2E).

设A为3阶矩阵,且A+E,A+2E,A-3E均为奇异阵,则|A*+4E|=?

可利用特征值如图得出答案是-12.经济数学团队帮你解答,请及时采纳.谢谢!

A-E A+2E 2A-E为奇异矩阵 求|A+3E|

知识点:1.设f(x)是x的多项式.若a是A的特征值,则f(a)是f(A)的特征值2.A的行列式等于A的全部特征值之积.由A-EA+2E2A-E为奇异矩阵所以|A-E|=0,|A+2E|=0,|2A-

设矩阵A满足A^3-2A^2+9A-E=0,证明A和A-2E都是可逆矩阵,并求出它们的逆矩阵.关键是第二个

1、由于A^3-2A^2+9A-E=0所以A^3-2A^2+9A=E所以A(A^2-2A+9E)=E所以|A|0,所以A可逆,并且A的逆矩阵就是A^2-2A+9E2、由于A^3-2A^2+9A-E=0

A为3阶矩阵,E-A,E-2A,2E-A均为不可逆,又矩阵B=A^2-8A^3 求矩阵B的3个特征值.

因为E-A,E-2A,2E-A均为不可逆,所以|E-A|,|E-2A|,|2E-A|均为0.即|E-A|,2|0.5E-A|,|2E-A|均为0.又A的特征值λ计算公式为|λE-A|=0的λ的值.可得

任何矩阵A都等价于单位矩阵E吗?

当然不是.“两个矩阵等价”就是“两个矩阵形式相同并且秩相等”.首先A不一定是方阵,如果是矩形阵的话,A和E形状都不同,怎么能等价呢?!其次就算A是方阵,也不一定满秩.总结起来:只有满秩的方阵才与E等价

设A,A-E都是n阶正定矩阵,证明E-A^-1为正定矩阵

正定的充分必要条件是所有特征值为正,故可如图证明.经济数学团队帮你解答,请及时采纳.谢谢!

设三阶方阵A相似于矩阵diag(-1,1,2),求|A*A+E|

-1. 用性质计算.经济数学团队帮你解答.请及时评价.

线代中,(A.E)矩阵等于(A)矩阵吗?

等于.你可以找一个A,然后把AE相乘就知道.再问:哦