设三阶方阵a的特征值为1,-1,2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 00:06:47
A*=A的行列式乘以A的逆=(-1乘以2乘以-3)乘以A的逆=6倍的A逆3阶方阵A的特征值为-12-3,A逆的特征值为-1,1/2,-1/3,所以A*的特征值为-6,3,-2
设λ对应的A的特征向量为x,则Ax=λx,那么(2A+E)x=2Ax+x=2λx+x=(2λ+1)x,由特征值定义可知2λ+1是2A+E关于特征向量x的特征值
A^-1的特征值是A的特征值的倒数:1/3,1/2,1/4再问:这是真的吗==这么简单
求特征值么?A*特征值=|A|/A特征值,6、2、3A^2+3A+E的特征值为A特征值带入所得值-1,-1,1
是不是【A+2E】的值?A+2E的特征值为3,1,4,所以【A+2E】=3*1*4=12.
由已知,A(1,1,1)^T=(1/9)(1,1,1)^T所以A的每行元素的和都是1/9所以A的9个元素之和等于3*(1/9)=1/3.
A的特征值是1,2,3则A^2的特征值是1^22^23^2即1494A的特征值是4*14*24*3即4812A^2-4A的特征值是1-44-89-12即-3-4-3则|A^2-4A|=(-3)*(-4
若λ是A的特征值,且A可逆则1/λ是A^-1的特征值(定理)所以1-1/λ是E-A^-1的特征值再问:为什么1-1/λ是E-A^-1的特征值呢?再答:E-A^-1是A^-1的多项式有定理:f(λ)是f
A^(-1)的特征值为1/λ:1,1/2,1/3.|A|=1*2*3=6.A*的特征值为|A|/λ:6,3,2设f(x)=x²+3x+5则A²+3A+5E的特征值为f(λ):9,1
您好!A的三个特征向量互不相同,所以A可对角化,存在可逆矩阵P使得A=P*diag{1,2,3}*P^(-1).所以A+E=P*diag{1,2,3}*P^(-1)+P*P^(-1)=P*(diag{
A*=|A|A^(-1)|A|=1×2×3=6A*=6A^(-1)所以特征值为6×1/1=66×1/2=36×1/3=2
Ax=axA^mx=A^m-1Ax=aA^m-1x=...=a^mx
三阶方阵A的3个特征值为1,2,-4,则A(-1次方)的三个特征值1,1/2,-1/4.请楼主参考!
A的特征值为1,-1/3所以A^2的特征值为1,(-1/3)^2=1/9所以|A^2|=1x(1/9)=1/9
利用特征值与矩阵多项式的关系可求解若A有特征值x,则A的多项式f(A)的特征值为f(x)A的行列式为-2,A*=|A|A^(-1)=-2A^(-1),A*有一个特征值为6,即知A有一个特征值满足-2x
由特征值的定义有Aα=λα,α≠0(λ为特征值,α为特征向量)则有A^2α=A(λα)=λAα=λ^2α即有(A^2-2E)α=(λ^2-2)α也就是说如λ是A的特征值,那么λ^2-2就是A^2-2E
B的特征值为(2λ^3-3λ^2):-1,5,-16
只知道特征值是没法求出A的,如果还知道特征向量就可以求出A来.