设三阶方阵A的三个特征值是1,1,2,则(2A)*-6A-1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 23:18:30
设三阶方阵A的三个特征值是1,1,2,则(2A)*-6A-1
设3阶方阵A的特征值为-1 2 -3,则A‘的特征值为

A*=A的行列式乘以A的逆=(-1乘以2乘以-3)乘以A的逆=6倍的A逆3阶方阵A的特征值为-12-3,A逆的特征值为-1,1/2,-1/3,所以A*的特征值为-6,3,-2

设三阶方阵A的三个特征值为:λ1 = 1 ,λ2 = -1 ,λ3 = 2 ,求|A*+3A-2I|

设PAP~使得A对角,即PAP~=1000-10002则|A*+3A-2|=|P(A*+3A-2)P~|=|PA*P~+PAP~-2|而PA*P~=P(|A|A~)P~=|A|(PA~P~)为PAP~

设三阶方阵A的特征值为-1,-2,-3 求A*,A²+3A+E

求特征值么?A*特征值=|A|/A特征值,6、2、3A^2+3A+E的特征值为A特征值带入所得值-1,-1,1

设三阶矩阵A的三个特征值为-1,3,5,则A-3E的特征值?

知识点:若a是A的特征值,则f(a)是f(A)的特征值.f(x)是多项式因为三阶矩阵A的三个特征值为-1,3,5所以A-3E的特征值为-1-3=-4,3-3=0,5-3=2.再问:做题突然发现这是盲点

方阵的特征值问题:设A为3阶方阵,A的三个特征根为1,2,3,则|A^2-4A|=?

A的特征值是1,2,3则A^2的特征值是1^22^23^2即1494A的特征值是4*14*24*3即4812A^2-4A的特征值是1-44-89-12即-3-4-3则|A^2-4A|=(-3)*(-4

设A可逆,方阵的特征值为λ,E-A^(-1)的特征值是多少

若λ是A的特征值,且A可逆则1/λ是A^-1的特征值(定理)所以1-1/λ是E-A^-1的特征值再问:为什么1-1/λ是E-A^-1的特征值呢?再答:E-A^-1是A^-1的多项式有定理:f(λ)是f

设λ为方阵A的特征值,证明λ²是A²的特征值.

(用c代替lambda)c是特征值,则存在非零向量x使得cx=Ax,于是A^2x=A(Ax)=cAx=c^2x,c^2是A^2特征值

四阶方阵,伴随矩阵A*的特征值是1,2,4,8.求(1/3A)^-1的特征值

题:四阶方阵,伴随矩阵A*的特征值是1,2,4,8.求(1/3A)^-1的特征值对于四阶方阵,伴随矩阵A*=|A|A^(-1),记将其特征值用符号k标记,对应于特征向量d.易见|A*|=1·2·4·8

已知B是3阶方阵,三个特征值是1,2,3.求|B*|

|B|=三个等征值是积=1*2*3=6而由BB*=|B|E=6E两边取行列式|B||B*|=|6E|,6|B*|=6³解得|B*|=6²=36

设3阶方阵A与B相似,且A的特征值是1,12,13

由于方阵A与B相似,因此A与B的特征值相同所以,B的特征值是1,12,13,而B是三阶的,因此上面三个特征值是B的全体特征值所以,B-1+E的特征值为11+1=2、112+1=3、113+1=4故:|

设三阶方阵A的三个特征值为1,2,3,则A+E的行列式=?

您好!A的三个特征向量互不相同,所以A可对角化,存在可逆矩阵P使得A=P*diag{1,2,3}*P^(-1).所以A+E=P*diag{1,2,3}*P^(-1)+P*P^(-1)=P*(diag{

设三阶方阵A的三个特征值为1,2,3,则的6A*三个特征值为.

A*=|A|A^(-1)|A|=1×2×3=6A*=6A^(-1)所以特征值为6×1/1=66×1/2=36×1/3=2

λ是方阵A的特征值,如何证明1/λ是A^(-1)的特征值,其中(-1)表示A的逆

这里既然写成了这样,那么A是可逆的,λ是不为0的由于|λE-A|=0,而|λE-A|=|λAA逆-A|=|λA(A逆-1/λE)|=|λA||(A逆-1/λE)|=0所以|1/λE-A逆|=0这就是说

设三阶方阵A的3个特征值为1,2, -4,则A(-1次方) 的三个特征值?

三阶方阵A的3个特征值为1,2,-4,则A(-1次方)的三个特征值1,1/2,-1/4.请楼主参考!

已知三阶方阵A有特征值-1,1,2,那么A+E的特征值是0,2,3吗

是的方阵特征值为xA+aE的特征值是x+a

三阶方阵A的特征值是1,2,-3,A*是A的伴随矩阵,则|A*+E|=

A逆=1/\A\A*A*=\A\A逆\A\=1×2×(-3)=-6A*的特征值分别为-6÷1=-6,-6÷2=-3,-6÷(-3)=2所以A*+E的特征值为-6+1=-5,-3+1=-2,2+1=3从

设r是方阵A的特征值,如何证明r的平方是方阵A的平方的特征值

设x是r对应的非零特征向量,则有Ax=rx,上式两边同左乘A,则AAx=rAx=rrx,由此可以得到r^2是A^2的特征值

已知3阶方阵A的特征值分别为1,-1,-2如何求方阵A?

只知道特征值是没法求出A的,如果还知道特征向量就可以求出A来.

1.A是三阶方阵,其特征值是1,-2,3,为何:A的行列式的代

1.A是三阶方阵,其特征值是1,-2,3,为何:A的行列式的代数余子式A11+A22+A33=-2+3-6如何求出A*的特征值