设三角形ABC的面积为S,2S 根号3ab乘ac
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 01:02:27
(1)S=c^2-(a-b)^2=c^2-a^2-b^2+2ab=2ab(cosC+1)=absinC/24cosC+4=sinCsinC-4cosC=4设cosd=4/(17)^(1/2),sind
【解】(1)向量AB*向量BC=2,则|AB|*|BC|cos(180°-B)=2,即|AB|*|BC|cosB=-2,又因面积S=(1/2)|AB|*|BC|sinB,即|AB|*|BC|sinB=
记BC为a(1)2R=a/sinA=c/sinC=b/sinB=4,∴a=4sinA,b=4sinBS=1/2*a*bsinC=8sinAsinBsinC=4√(3)sinxsin(x+π/3)=6s
设两个直角边是a和b,斜边是c,则a+b+c=2a²+b²=c²(a+b)=(2-c)根据均值不等式,得[(a+b)/2]²≤(a²+b²)
B1/3
(1)∵√2≤|AB||BC|sinθ/2≤3====>2√2≤|AB||BC|sinθ≤6……(1)|AB||BC|cosθ=6………(2)(1)/(2):√2/3≤tanθ≤1≤θ≤45º
取AB中点D、AC中点E,连接DE简单可得△ADE∽△ABC,DE∥BC,相似比为1:2所以两三角形的高也为1:2,因为平行线间处处距离相等,所以从线段DE上任取一点,到BC的距离都是△ABC高的一半
BC上作高,再过高的中点作BC的平行线,则点落在平行线下方时PBC的面积就小于s/2因为为高的中点的平行线,所以上方的面积恰为S/4,下方的面积为3S/4所以概率为3/4.
S=1/2(a+b+c)rr=2S/(a+b+c)
显然sin(C+π/6)≤1所以sinC·(√3)/2+cosC·1/2≤1即2-cosC≥(√3)sinC不等式两边同时乘以2ab得4ab-2abcosC≥4(√3)(1/2)absinC=4(√3
分析:由于△ADE与△BDE是等高的三角形,可得M/S△ADE=BD/AD,同理亦可得S△ADE/S△ABE=AD/AB,S△ABE/S=AE/AC,再由平行线分线段成比例的性质可得M与S的关系,进而
内切圆心o与三角形三个顶点连接.三角形被分成三个△OAB,△OAC△OBC,△ABC面积=1/2AB*r+1/2AC*r+1/2CB*r=(1/2)l
太简单了,只要弄明白三角形内切圆与三角形的关系就行了,我不画图了,简单说一下,内切圆的圆心就是三角形内角平分线的交点,找到圆心后,一、连接圆心与三角形的三个顶点,分成三个小三角形,二、从圆心向三边作高
先由正弦定理易得AC=4sinx,所以S=(1/2)AC•BC•sinC=4√3sinxsin(2π/3-x),化简得S=2√3sin(2x-π/6)+√3,定义域为(0,2π
随便作个三角形,并作出内切圆圆心到各条边的半径,再连接圆心和三角形各顶点得到3个三角行和它们各自的高的图形,根据面积公式列出等式即可证明r=s除以P其中P=2分之(a+b+c)2.若三角形ABC为直角
S=L.R/2,你可以没BE=a,EC=b,AD=C,由内切圆定理可知:BD=a,CF=b,AF=c,则L=2(a+b+c),可求出a+b+c=L/2①,另外可求面积S=(a+b).r/2+(b+c)
(1)如图(2)“S+1/BA向量*BC向量”写的不清楚,不知道楼主要求的式子到底是啥?
1.问一下,是4sinBsin²(π/4+B/2)+cos2B=1+根号3吧?化简得2sinB【1-cos(π/2+B)】+cos2B=1+根号3继续化简得sinB=1/2根号3所以B=π/
设BD/BC=a那么CD/BC=1-a,根据面积比和相似比的关系可得S三角形BDE=a2S(a2代表a的平方),S三角形CDF=(1-a)2S所以S四边形AEDF=S-S三角形BDE-S三角形CDF=
由S=更号3/4(a方+b方-c方)可知sinC=更号3/2,所以C=60度sinA+sinB=(更号2)*sin{(A+B)/2}*COS{(A-B)/2}sin{(A+B)/2}=SIN60度=根