设∑是球面x²+y²+z²=R²,则曲面积分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 09:30:55
设∑是球面x²+y²+z²=R²,则曲面积分
设z=x+yi(x,y属于R),则满足等式|z+2|=-x的复数z对应的点的轨迹是

C|z+2|=-x两边平方得(x+2)^2+y^2=x^24x+y^2+4=0是抛物线

高数求偏导:设z=z(x,y)是由方程(e^x)-xyz=0

将z对x的偏导记为dz/dx,(不规范,请勿参照)(e^x)-xyz=0两边对x求导数(e^x)'-(xyz)'=0e^x-x'yz-xy(dz/dx)=0e^x-yz-xy(dz/dx)=0xy(d

计算曲面积分 ∫∫(x^2+y^2)ds,其中 ∑是上半球面z=根号(4-x^2-y^2)

dz/dx=-x/√(4-x²-y²),dz/dy=-y/√(4-x²-y²)dS=√[1+(dz/dx)²+(dz/dy)²]dxdy=2

设x,y,z∈R,是、试比较5x^2+y^2+z^2与2xy+4x+2z-2的大小

5x^2+y^2+z^2-(2xy+4x+2z-2)=5x^2+y^2+z^2-2xy-4x-2z+2=(4x^2-4x+1)+(x^2-2xy+y^2)+(z^2-2z+1)=(2x-1)^2+(x

求内接于球面x^2+y^2+z^2=R^2的长方体的最大体积

内接长方体的对角线长为球的内径即a^2+b^2+c^2=(2R)^2长方体的体积为abc利用公式a^2+b^2+c^2〉=3abc也就是说当a=b=c时,abc存在最大值为(a^2+b^2+c^2)/

球面的三重积分设M由上半球面x^2+y^2+z^2=a^2与平面z=0围成,则x^2+y^2+z^2在区域M上的三重积分

∫∫∫(x^2+y^2+z^2)dxdydz=∫(0,2π)dθ∫(0,π/2)sinφdφ∫(0,a)r^4dr=(2π/5)a^5

设Z=x+yi(x,y属于R)|Z+2|-|Z-2|=4 复数Z所对应的点轨迹是

因为:|Z+2|表示为复平面上的点Z=x+yi到点A(-2,0)的距离|Z-2|表示为复平面上的点Z=x+yi到点B(2,0)的距离因为|Z+2|-|Z-2|=4=|AB|所以复数Z所对应的点轨迹是A

用高斯公式计算曲面积分∮xy^2dydz+yz^2dzdx+zx^2dxdy,其中∑为球面x^2+y^2+z^2=R^2

令P=xy²,Q=yz²,R=zx²∵αP/αx=y²,αQ/αy=z²,αR/αz=x²∴由高斯公式,得原式=∫∫∫(αP/αx+αQ/α

设x,y,z∈,R求证:x²+xz+z²+3y(X+y+z)≥0

令f(x)=x^2+z*x+z^2+3*y(x+y+z)=x^2+(z+3*y)*x+z^2+3y^2+3yz,即把y、z看成常量,根的判别式=(z+3*y)^2-4(z^2+3y^2+3yz)=-3

如何求球面x²+y²+z²=r²与平面x+y+z=0的交线

联立两个方程就是代表三维平面的交线了吧

设x,y,z属于R且3^x=4^y=6^z

先判断3x与6z,两边取对数,得x/z=log(底数是3,真数是6)小于2,那么3x

设x,y,z∈R+,且3x=4y=6z.

(1)证明:设3x=4y=6z=t.∵x>0,y>0,z>0,∴t>1,lgt>0,则x=log3t=lgtlg3,y=log4t=lgtlg4,z=log6t=lgtlg6.∴1z−1x=lg6lg

设球面∑:x^2+y^2+z^2=1,则曲面积分∫∫(x+y+z+1)^2dS=

∵x²+y²+z²=1==>z=±√(1-x²-y²)令S1:z=√(1-x²-y²),S2:z=-√(1-x²-y&#

设∑是球面x^2+y^2+z^2=4,则曲面积分∮∫(x^2+y^2+z^2)dS=

面积元素ds=2/(4-x^2-y^2)^1/2dxdy∫∫(x^2+y^2+z^2)dS=x^2+y^2+z^2)dS=∫∫4.2/(4-x^2-y^2)^1/2dxdy极坐标换元:∫∫(x^2+y

设s为球面x^2+y^2+z^2=1,求曲面积分∫∫(x+y+z+1)ds的值 答案是4∏

根据球面的对称性,所以对关于x,y,z的奇函数的积分为0所以∫∫xdS=∫∫ydS=∫∫zdS=0所以原积分=∫∫(x+y+z+1)dS=∫∫dS=球面的表面积=4π

设F是球面x^2+y^2+z^2 = 1与平面x+y+z=0的交线,则∮(2x+3y^2)ds = 求具体解题步骤,快要

由积分曲线的方程可以看出表达式具有轮换对称性,因此∮xds=∮yds=∮zds,同理∮x^2ds=∮y^2ds=∮z^2ds,所以∮xds=(1/3)(∮(x+y+z)ds)=0,∮y^2ds=(1/

数学曲线积分 求i=∫y²ds, 其中c是球面x²+y²+z²=r²与

由于曲线关于x,y,z具有轮换对称性,因此有:∫y²ds=∫x²ds=∫z²ds则∫y²ds=(1/3)∫(x²+y²+z²)ds